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Decision tree methods generally suppose that the number of categories of the attribute to be
predicted is fixed. Breiman et al., with their Twoing criterion in CART, considered gathering the
categories of the predicted attribute into two supermodalities. In this article, we propose an
extension of this method. We try to merge the categories in an optimal unspecified number of
supermodalities. Our method, called Arbogodaï, allows during tree growing for grouping cat-
egories of the target variable as well as categories of the predictive attributes. It handles both
categorical and quantitative attributes. At the end, the user can choose to generate either a set of
single rules or a set of multiconclusion rules that provide interval-like predictions. © 2005 Wiley
Periodicals, Inc.

1. INTRODUCTION

Induction trees are among the most popular supervised methods proposed in
the literature. They are appreciated for the simplicity and the high efficacy of the
algorithms, for their ease of use, and for the easily interpretable results they pro-
vide. Hastie et al. ~Ref. 1, p. 313! designate them as the learning tool that comes
closest to the requirements of an “off-the-shelf” method.

Many induction tree methods have been proposed so far in the literature. Some,
like ID3,2 C4.5,3 and CHAID,4,5 build n-ary trees; others like CART6 produce
binary trees or, like SIPINA,7,8 latticed graphs that generalize trees by allowing
the merging of nodes.

All these methods were originally intended for categorical attributes and
require therefore that quantitative variables be discretized. This discretization can
be done at once before growing the tree. Most of the tree growing methods,
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nevertheless, handle quantitative variables in an automatic manner by dynami-
cally choosing the optimal discretization thresholds at each node.9–11 Some meth-
ods also attempt to reduce the number of categories of nominal attributes by
partitioning them into a smaller number of classes. CART, for example, merges
the categories into two new supermodalities at each new split. This has the advan-
tage of avoiding uselessly increasing the number of nodes. Indeed, the higher the
number of nodes, the greater are the chances that some of them will have too few
cases to get reliable estimates of the response classes probabilities.

There are two main ways for partitioning the values of the nominal predictive
attributes:

1. The first is, for instance, a characteristic feature of CHAID.4 At each node, the local
discriminating power of each categorical attribute is tested using all possible partitions
of its values. Partitions in two or more groups are explored. Thus, for each split, a
predictor is selected simultaneously with its locally best partition.

2. The second strategy is used, for instance, by Breiman et al.6 in their CART method. At
each node, CART looks only for the best bipartition of each predictor. It generates thus
only binary trees.

With their Twoing criterion, the authors of CART, however, also propose a strat-
egy that extends their principle to the response variable. When the response is
multivalued, using Twoing is equivalent to seeking, for every predictor, simulta-
neously the best bipartition of its values and the best bipartition of the response
values. The Twoing is the value of the Gini impurity for the best couple of biparti-
tions and is used for selecting the split variable at each node.

In this article, we extend the principle of a simultaneous search of a double
bipartition. We combine the CHAID and CART approaches. Like CHAID we look
at each step for the best not necessarily binary partition of the attributes. Like
CART with Twoing we explore also the partitioning of the values of the target
variable. Unlike CART, we do not, however, restrict ourself to bipartitions. At
each step we look for the simultaneous grouping of the predictor values and of the
target variable values that optimizes the chosen criterion. This gives rise to a new
induction tree method that we call Arbogodaï. This kind of tree is characterized by
a number of value classes of the target variable that varies from one node to the
other. It is dynamically determined at each new split. When the majority class in a
leaf contains several response values, the corresponding prediction rule becomes a
multiple conclusion rule. For instance, we can get a rule like “a female customer
aged between 30 and 40 with a monthly income ranging from 4000 to 5000 euros
will choose a red or blue car.” Indeed, we can easily compute which of the two
colors is more frequent in the leaf. Hence, we can also derive classical simple
rules. With Arbogodaï, the user has the possibility to chose the kind of rule that
best suits her/his needs.

The article is organized as follows. Section 2 sets the framework and recalls
the goal and principle of induced decision trees. In Section 3, we motivate the
simultaneous n-ary partitioning of the target and predictor values. Section 4
describes the simultaneous row–column merging heuristic. The Arbogodaï tree
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growing process that seeks at each step the optimal joint merging of target and
predictor values is described in Section 5. Section 6 discusses the multiple conclu-
sion nature of the generated rules and how to measure their prediction error rates.
It reports also some experiments with a set of benchmark datasets. In Section 7,
we propose an in-depth study of the simultaneous merging heuristic. Further devel-
opments are briefly discussed in the concluding section.

2. PRINCIPLE OF INDUCTION TREES AND NOTATIONS

Let V be the population concerned by the learning problem. The profile of
any member v of V is described by p variables, X1, . . . , Xp , called either exog-
enous variables, predictive attributes, or predictors. These variables can be quali-
tative or quantitative. The set of values taken by Xj is denoted by Xj . Each variable
Xj , j �1, . . . , p can be seen as a mapping Xj :Vr Xj , where Xj , the domain of the
values of Xj , is any not necessarily finite set. We consider also a target attribute C,
sometimes called the response, endogenous, or dependent variable, and designate
by C the set of response values. Like the Xj ’s, C can be qualitative or quantitative.
Because the attributes Xj and the target variable C take only a finite number of
different values in a given dataset, the sets Xj and C are finite. We denote by mj the
number of different values taken by the attribute Xj and by � the number of differ-
ent response values ci . Thus, C � $c1, . . . , c� % .

The goal of induction trees is then to generate a model f~X1, . . . , Xp ! in the
form of a decision tree for predicting the value of C from the knowledge of the
values taken by the predictive attributes. The tree f is induced from a training
sample VL � V. The validation of the predictive model is done on a test sample
VT � V distinct from the former, VL � VT � �.

The growing process of the tree is quite simple. As illustrated in Figure 1, the
set VL is iteratively split by means of, at each step, one of the predictive attributes
X1, . . . , Xp .

Figure 1. An induced tree.
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The leaves of the tree obtained at each step t of the growing process define a
partition St of VL that becomes finer and finer with t. The root of the tree corre-
sponds to the trivial partition S0 � $VL % .

The goal is to get a partition with each leaf ~class of the partition! as pure as
possible, a pure leaf being one in which all the individuals have the same value for
the predicted attribute. The leaf must indeed contain enough individuals to be
reliable.

The tree given in Figure 1 partitions VL in three subsets corresponding to the
nodes s2, s3, and s4. In leaf s3, for example, we have the set of cases of VL that take
values X1 � male and X2 � 5000. At step t, the partition St is derived from the
previous one St�1 by seeking the best leaf-attribute couple ~sk , Xj !, that is, that for
which the splitting of sk � St�1 according to the values of Xj maximizes the gain
of information on the target variable between St�1 and St . Formally, letting
G~St�1, sk , Xj ! be the gain of information when sk is split with attribute Xj , we
seek at step t the leaf-attribute couple ~sv , Xu ! such that

G~St�1, sv , Xu ! � max
k; j

G~St�1, sk , Xj !

The gain of information is usually measured as the reduction in uncertainty for the
target variable or as the increase in the strength of association between the parti-
tion and the target variable. The growing process stops when the criterion can no
longer be improved, that is, when G~St�1, sv , Xu ! � 0, or when some other stop-
ping criterion is reached.

Let n be the grand total of cases in node s, nik the number of cases with value
ci for the target variable in the class ~leaf ! sk of the partition S of the cases in s, n.k

the total number of cases in leaf sk , and ni. the total number of cases with value ci

in s. The corresponding observed frequencies are denoted respectively by fik , f.k ,
and fi. , and fi6k � nik /n.k stands for the conditional frequency of value ci in the leaf
sk . To be rigorous, the ns and fs should be indexed by the node label s. We omit it
to avoid cumbersome notations.

At any node s of a tree, an attribute Xj defines a partition of the cases in s.
This partition is described by the columns of the l � mj contingency table ~Table I!
that cross-tabulates the target variable ~rows! with Xj ~columns!.

The criteria used to measure the gain of information brought by a split defined
by Xj are computed from this table. For instance, some methods try to maximize

Table I. Contingency table defined by Xj at a node s.

xj1 . . . xjk . . . xjmj
Total

c1 n11 . . . n1k . . . n1mj
n1.

I I L I I I
ci ni1 . . . nik . . . nimj

ni.

I I I L I I
c� n�1 . . . n�k . . . n�mj

n�.

Total n.1 . . . n.k . . . n.mj
n
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the reduction in uncertainty as measured by entropies. In this case, the uncertainty
after the split is defined as the weighted mean of the uncertainty of the columns of
the contingency Table I:

I ~S! � (
k�1

mj n.k

n
h~ f16k ; . . . ; fi 6k ; . . . ; f�6k ! ~1!

where h~ ! is, for example, the Shannon entropy, �(i�1
� fi 6k log2 fi 6k , or the

quadratic entropy, also known as the Gini diversity index, (i�1
� fi 6k~1 � fi6k !.

Alternatively, some methods, like CHAID, optimize the strength or the statistical
significance of the association between the resulting partition ~columns of Table I!
and the target variable ~rows of Table I!.

Let us recall that CHAID tries, at each step, to merge the columns of cross-
tables like Table I to find the best grouping of values for each candidate attribute,
that is, the grouping that optimizes the criterion. CHAID makes no change, how-
ever, on the values of the target variable. Arbogodaï, like the Twoing approach in
CART, considers merging both columns and rows. Unlike the Twoing rule that
looks for the best solution among 2 � 2 tables only, we seek however the best
cross-partition without constraints on the number of rows and columns. Section 4
discusses this joint row–column partitioning issue. Before turning to it, we moti-
vate the approach in Section 3.

3. MOTIVATIONS FOR A JOINT n-ARY PARTITIONING

Consider the contingency Table II. The best bipartition of its columns is Sbin �
$$a, b%, $d, e%% , whether we use the Gini, the Twoing, the significance of Pearson’s
Chi-squares, or an association measure like the t of Tschuprow. Now, the best three-
way partition is S3way � $$a%, $b, d %, $e%% with any of the criteria except Twoing,
which is not applicable. Clearly S3way cannot be obtained by splitting the classes
of Sbin . This proves that multiple binary partitions are not equivalent to n-ary par-
titions and can sometime miss optimal solutions.

The merging of response values is different in nature from that of the values
of a predictive attribute. Indeed, the partition of the response values does not trans-
late into a split of the node. Considering such mergings in the optimization pro-
cess merits, therefore, some further justification. This is given by simply extending
the argument of Breiman et al. ~Ref. 6, p. 105!, who argue that searching for

Table II. A n-ary solution different from that of successive binary splits.

a b d e Total

c1 200 100 10 1 311
c2 10 150 150 10 320
c3 1 10 100 200 311

Total 211 260 260 211 942
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superclasses ~the groups of the partitions of the response values! provides strate-
gic information on the similarities of responses. When two or more responses, red
car and blue car, for example, are almost equally frequent it may be a better strat-
egy to predict that the customer will buy a red or a blue car than explicitly a red
one. Simultaneously, it may be useful to know that yellow and pink colors are
much less probable than all other nonred and nonblue proposed colors. There is
thus no reason to limit the argument to two superclasses only. Multisupermodali-
ties provide a more refined strategic information.

Now, the grouping on one variable ~say the row variable!may obviously affect
the optimal grouping on the other attribute ~the column variable!. For example,
grouping first rows c1 and c2 in Table II we get the reduced table

�210 250 160 1

1 10 100 200�
The most similar columns in this new table are obviously the first two. Hence, the
best column partitioning would be $$a, b%, $d %, $e%% or $$a, b, d %, $e%% , but clearly
not the one found without grouping the rows. Due to this relationship between the
partitions of the rows and the columns, it is then essential to determine them
simultaneously.

4. SIMULTANEOUS ROW AND COLUMN PARTITIONING

In this section, we introduce the method adopted for determining the best
simultaneous partition of the rows and the columns. First, we specify the objec-
tives and briefly review related works. We then define the formal setting and
describe our merging heuristic.

4.1. Objectives

Although the univariate optimal grouping of values has been abundantly stud-
ied since the pioneering work of Walter Fisher,12 the literature about the simulta-
neous grouping of rows and columns of a table is less rich. We can mention the
related work by Fisher13,14 about the optimal grouping of the unknowns and equa-
tions of predictive economic models. The simultaneous partitioning of the cases
~rows! and the variables ~columns! in a data matrix has been studied by Ander-
berg,15 Bock,16 and Govaert,17 among others. In Refs. 17 and 18, Govaert investi-
gates the special case of binary tables. In the framework of contingency tables that
we are interested in, the optimal partitioning problem has been studied from dif-
ferent points of view. Benzécri19 is interested in the partition in a fixed number of
groups that maximizes the Pearson Chi-square. A solution to this problem is given
in Ref. 20 in the form of an iterative heuristic that clusters alternatively the rows
and the columns. Gilula and Krieger21 study how the Pearson Chi-square behaves
when the table is reduced by aggregation. Hirotsu22 and Greenacre23 are inter-
ested in finding the most homogeneous tables. As already mentioned, Breiman
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et al.6 have considered with their Twoing approach the joint dichotomization of
two variables.

Our objective is to find both the number of groups and the joint partition of
rows and columns of a contingency table that maximizes the row–column associ-
ation. None of the works cited gives a satisfactory solution to this problem. Some,
like those done after Benzécri19 or those by Breiman et al.,6 assume the number of
groups fixed a priori. The others either do not consider the case of contingency
tables or consider criteria, homogeneity for example, that are hardly transposable
in our setting.

Clearly, the exhaustive scanning of all combinations of partitions of each of
the variable is not practicable for large tables. We show in Section 7.1 that the
search of the optimal solution becomes untractable when the number of values of
the predictive and/or target variable exceeds 5 or 6. We consider therefore a heu-
ristic, first introduced in Ref. 24, that successively looks for the optimal grouping
of two row or column categories. We recall the principle of the algorithm hereafter
and will propose an in-depth study of its behavior and performance in Section 7.

4.2. Formal Framework

Let X be a predictive attribute. From hereon we shall drop the subscripts j
when there is no ambiguity. Cross-tabulating variable C with X generates a contin-
gency table T��m with � rows and m columns.

Let uCX � u~T��m ! denote a generic association criterion for table T��m .
This criterion uCX may thus be a Chi-square-based association measure like Cram-
er’s v or Tschuprow’s t, an asymmetrical PRE measure like Goodman-Kruskal’s
tCX or Theil’s uncertainty coefficient uCX , or, when both variables are ordinal, an
ordinal association index like Kendall’s tb or Somers’ dCX .

Let Pc be a partition of the values of the row variable C, and Px a partition of
the states of X. Each couple ~Pc , Px ! defines then a contingency table T~Pc , Px !.
The optimization problem considered is then the maximization of the association
uCX among the set of couples ~Pc , Px ! of partitions

max
Pc , Px

u~T~Pc , Px !!

For ordinal variables, hence for interval or ratio variables, only partitions
obtained by merging adjacent categories make sense. We consider then the restricted
program

�max
Pc , Px

u~T~Pc , Px !!

u.c. Pc � Ac and Px � Ay

where Ac and Ax stand for the sets of partitions obtained by grouping adjacent
values of C and X. Letting Pc and Px be the unrestricted sets of partitions, we have
for �, m � 2, Ac � Pc and Ax � Px . Finally, note that ordinal association measures
may take negative values. Then, for maximizing the strength of the association,
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the objective function u~T~Pc , Px !! should be the absolute value of the ordinal
association measure.

4.3. The Heuristic

The heuristic is an iterative greedy process that successively merges the two
rows or columns that most improve the association criteria u~T!.

Such a heuristic may indeed not end up with the optimal solution, but perhaps
only with a quasi-optimal solution. See Section 7.3 for empirical insights on this
suboptimality. Formally, the configuration ~Pc

k , Px
k ! obtained at step k is the solu-

tion of

�
max
Pc , Px

u~T~Pc , Px !!

u.c. Pc � Pc
~k�1! and Px � Px

~k�1!

or

Pc � Pc
~k�1! and Px � Px

~k�1!

~2!

where Pc
~k�1! stands for the set of partitions on C resulting from the grouping of

two classes of the partition Pc
~k�1! . For ordinal variables, Pc

~k�1! and Px
~k�1! should

be replaced by the sets Ac
~k�1! and Ax

~k�1! of partitions resulting from the aggrega-
tion of two adjacent elements.

Let T0 � T��m be the table associated with the finest partition of the catego-
ries of C and X. Starting with T0 , the algorithm successively determines the tables
Tk, k �1,2, . . . corresponding to the partitions solution of Equation 2. The process
continues while u~Tk !� u~T~k�1! ! and is stopped when the best grouping of two
categories leads to a reduction of the criteria.

The quasi-optimal grouping is the couple ~Pc
k , Px

k ! solution of Equation 2 at
the step k where

u~T~k�1! !� u~Tk ! � 0 and u~Tk !� u~T~k�1! !� 0

By convention, we set the value of the association criteria u~T! to zero for
any table with a single row or column. The algorithm then ends up with such a
single value table if and only if all rows ~columns! are equivalently distributed.

5. ARBOGODAÏ: A NEW DECISION TREE APPROACH

We now introduce the new Arbogodaï tree growing method. We first explain
the principle of the Arbogodaï algorithm and, then, describe how it works on an
example.

5.1. Principle of the Algorithm

Arbogodaï follows the general principle of tree growing presented in Sec-
tion 2. Its specificity is an additional preparatory step before testing the attributes
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at a node. This step consists of optimally reducing the size of the table that cross-
tabulates the target variable with the tested attribute. The splitting criterion is then
computed using the found partitions of both the attribute and the target variable
values. The splitting of the selected node is done according to the found classes of
values of the selected predictive attribute.

This additional step plays a role similar to discretization. The merging of
values can indeed be assimilated to some sort of discretization that works also on
nominal variables. Remember, however, that the merging is done here simulta-
neously at each step on the target and the predictive attribute.

The reduction of the table is that for which the row–column association u is
maximized. Indeed, we use the heuristic of Section 4.3 and measure the associa-
tion u with the t of Tschuprow: t � $n�1 @~� � 1!~m � 1!#�1/2x2 %1/2 , where x2 �

(i�1
� (k�1

m ~nni. n.k !
�1~nnik � ni. n.k !

2 is the Pearson Chi-square statistic. Unlike
some other association measures, the t of Tschuprow always increases with the
merging of equivalently distributed rows or columns ~see Ref. 25 and Section 7.2!.

The splitting criterion is the reduction in uncertainty ~gain in purity! achieved
with the columns of the reduced table as compared to its margin. The uncertainty
after the split is computed for every Xj by applying formula 1 on the optimal reduced
table for Xj at the considered node s.

More specifically, we use Laplace estimates of the column distributions after
the split; that is, the proportion of cases that take the ith value of C in column k is
estimated by:

fi 6k
*~l! �

nik
* � l

n.k
* � �*l

where the asterisk denotes values for the reduced table.
Using the quadratic ~Gini! entropy, the gain in uncertainty considered by Arbo-

godaï then reads

h~C * !� h~C * 6Xj
* ! � 1 �(

i

fi.
*2 �(

k

f.k
*�1 �(

i

~ fi 6k
*~l! !2�

�(
i
��(

k

f.k
* ~ fi 6k

*~l! !2�� fi.
*2�

The use of Laplace estimates penalizes the gain of uncertainty obtained at
nodes with small counts. With very small counts, that is, when l represents a sig-
nificant proportion of the count, a split may even deteriorate the uncertainty crite-
rion ~see Ref. 8, p. 76!.

5.2. Example

We now describe the Arbogodaï algorithm through an example. We consider
the Flags dataset from the UCI repository.26 The response variable C takes six
nominal values C � $c1, c2, c3, c4, c5, c6 % and there are 29 mixed categorical and
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quantitative predictive attributes X1, . . . , X29. The dataset contains 194 cases. Fig-
ure 2 shows an extract of the two first levels of the Arbogodaï tree for these data.

Step 1. At the root of the tree, we have the distribution of all 194 cases
among the six values of the response C. The 29 predictive attributes are succes-
sively tested. For every attribute, we first determine the optimal reduced cross-
table with the target variable. We then select the attribute for which the gain in
uncertainty computed on the reduced table is maximal. The winner is X7, which
takes eight values: X7 � $a, b, c, d, e, f, g, h% . The two simultaneous groupings
found by the heuristic of Section 4.3 are X7

* � $$c, d, e, h%;$a, b, g%;$ f %% and C* �
$$c1%;$c2, c4, c5, c6 %;$c3 %% . The corresponding cross-table is shown in Table III
together with the table of the derived conditional frequencies fi 6k

*~l! . The latter
have been computed by setting l � 1. The marginal uncertainty is h~C * ! � 1 �
0.2012 � 0.5302 � 0.2682 � 0.605 and the uncertainty after the split, which is
the weighted average of the uncertainty of each column, is h~C * 6X3

* ! � 0.314.
The gained information is thus 0.291. This is the maximal value achievable with
any of the 29 attributes.

Step 2. The process is repeated on every terminal node of the previously
obtained tree. Notice that we try to merge the original set of values X and C and
not the set of previously merged classes. In our example, the next best split occurs
at the middle node ~X7 � $a, b, g%!. The attribute selected for splitting this node is
X3. The six values of the target C were merged to form four target classes. How-
ever, no merging of the attribute values could improve the association between X3

and the target C. The node is therefore split into four new classes corresponding to
the four values of X3. This leads to the tree with six leaves shown in Figure 2.

Following steps. In our example, the tree growing process is stopped after
step 2. Without explicit stopping rules, the growing continues until the criterion

Figure 2. Example of an Arbogodaï tree.
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can no longer be improved. At step 3, Arbogodaï would scan the six leaves of the
previously grown tree.

Two further remarks should be made: ~1! At a same level, nodes that do not
result from a same parent may have different partitions of the set C of response
values. ~2!When the same attribute is used as the splitting variable at more than
one node, its values are not necessarily partitioned the same way for each split.
For example, growing the tree of Figure 2 one level further leads to splitting each
of the two leftmost leaves of level 2 with the same attribute X29. The correspond-
ing cross-tables are given in Table IV. It can be seen that the values of C are once
partitioned as $$c1, c2, c4%, $c3%, $c5, c6%% and once as $$c3%, $c4%, $c1, c2, c5, c6%% . Like-
wise, attribute X29 is used once with the partition $$a, b, d, e%, $ f %% and once with
$$a, e, d %, $b, f %% .

6. THE INDUCED RULES AND THEIR ACCURACY

Arbogodaï can generate two types of classification rules: ~1! classical rules
by disregarding the merged classes of response values in the final leaves, and
~2! multiple conclusion rules for leaves with merged response values. This section
specifies the nature of these rules, defines error rates adapted for them, and presents
experimentation results.

Table IV. Cross-table for splitting the two leftmost leaves with X29.

$a, b, d, e% $ f %

$c1, c2, c4 % 38 1
c3 0 3
Other 0 0

$a, d, e% $b, f %

c3 2 2
c4 8 0
Other 0 0

Table III. Step 1 optimal cross-table and Laplace estimates of
column distributions.

CX7 $c, d, e, h% $a, b, g% $ f %

$c1% 33 6 0
$c2, c4, c5, c6 % 2 100 1
$c3 % 17 9 26

Total 52 115 27

fi 6k
*~l! $c, d, e, h% $a, b, g% $ f % fi.

*

$c1% 0.618 0.059 0.033 0.201
$c2, c4, c5, c6 % 0.055 0.855 0.067 0.530
$c3 % 0.327 0.084 0.900 0.268

f.k
* 0.268 0.592 0.139 1
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We give hereafter the multiple conclusion rules generated by the tree of Fig-
ure 2. Each path joining the root to a leaf defines the premise of a rule. The con-
clusion is drawn from the distribution in the leaf, that is, for cases falling in the
leaf, the rule predicts the modal value in the leaf or modal class of values when
some are merged. The tree has six leaves, giving rise to the following six rules ~the
value in parentheses is the confidence of the rule for the training data!. Clearly,
when the majority class contains only one value we get classical rules. Here, only
R3 and R4 provide multiple conclusions in the form of “either c1 or c2.”

R1: If X7 � $c, d, e, h% then C � c1 ~33/52!

R2: If X7 � f then C � c3 ~26/27!

R3: If X7 � $a, b, g% and X3 � a then C � $c1, c2 % ~34/42!

R4: If X7 � $a, b, g% and X3 � b then C � $c3, c4 % ~12/12!

R5: If X7 � $a, b, g% and X3 � c then C � c6 ~10/16!

R6: If X7 � $a, b, g% and X3 � d then C � c5 ~31/45!

6.1. Error Rates

The accuracy of the learned rules is usually assessed with the misclassifica-
tion error rate or equivalently with the classification success rate. For classical
rules, the misclassification rate reads err � 1 �(s�S fs fmax6s where fs is the pro-
portion of cases in leaf s and fmax6s � maxi fi6s is the frequency of the modal response
in leaf s.

For multiple conclusion rules, we can indeed simply compute the classical
error by ignoring the multiple conclusion and focusing on the modal value in each
leaf. For taking the multiple conclusion into account, we define however two addi-
tional kinds of error rates:

superclass error serr � 1 �(
s�S

fs fmax6s
*

weighted superclass error: werr � 1 �(
s�S

fs fmax6s
* � (

i�Cmax, s

[pi 6max, s fi 6max, s�
where Cmax,s is the set of response values in the modal superclass at leaf s, fi6max,s

the frequency of response ci in that superclass, and [pi6max,s an estimation of the
probability of ci in the superclass. We get resubstitution error rates when the fre-
quencies are those of the learning sample and generalization error rates when the
frequencies are obtained from validation data. The estimations [pi6max,ss are in any
case computed on the training data. To get more reliable estimates, we use the
marginal distribution at the parent node. This can be justified as follows. Values
are merged when their distributions among the values of the split attribute are
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similar. Hence, their distributions inside the superclass are similar too, and, there-
fore, similar to the marginal distribution.

The superclass error, serr, is computed as for classical rules but with the
superclass frequencies fi 6s

* instead of the single response frequencies fi6s . Doing so,
we do not care indeed about classification error inside the modal superclasses.
This may have sense independently for each rule. We cannot compare, however,
the error rate of a rule that predicts for instance c1 with that of a rule that predicts
c1 or c2. Hence, the global superclass error does not make much sense.

The weighted superclass error, werr, takes the uncertainty inside the major-
ity class into account. It assumes that each case falling in a leaf is randomly assigned
to a value in the modal superclass. The supposed random assignment is done accord-
ing to the learned distribution inside Cmax,s . For instance, for our example tree, a
case ~X7 � a, X3 � a,C � c2 ! is correctly classified in the modal superclass of
leaf 3. In that leaf, the estimated proportion of cases taking C � c2 in the super-
class is 85%. Thus, we weight this correct classification down and count it as a
0.85 correct classification. In resubstitution, if we use [pi6max,s � fi6max,s , this is
equivalent to weighting down the success rates with the Gini uncertainty of the
distribution inside the superclass: werr �(s @1 � ~1 � serrs !Gini~Cmax,s !# , where
serrs is the superclass error for rule s.

It is well known that the learning error rate suffers from an optimistic bias. It
underestimates the generalization error rate. For validation, it is then common prac-
tice to compute the classification error rate on a validation dataset distinct from
the data used in the learning phase. Alternatively, and perhaps more frequently, a
cross-validation error rate is computed. A 10-fold cross-validation ~10CV!, for
instance, consists of splitting the learning sample into 10 approximately equally
sized parts. Dropping each time a different part we get 10 learning datasets from
which 10 trees are induced. For each of them we compute the error rate on the
dropped-out data. The cross-validation error rate is the mean values of the 10 result-
ing error rates.

6.2. Experimentation

We have experimented with our approach on eight benchmark datasets. Table V
gives the cross-validation success rates obtained for each dataset with Arbogodaï
and, for the sake of comparison, with CART and CHAID. For Arbogodaï, we give
the rate derived from both the classical and the weighted superclass error. Arbo-
godaï ranks first for five of the eight datasets whatever error is considered. Unsur-
prisingly, its superiority is mostly significant when the number of values of the
target variable is large.

7. ADVANCED STUDY OF THE MERGING HEURISTIC

The joint response and predictive attribute partitioning is done with the heu-
ristic described in Section 4.3. We propose here an in-depth study of this greedy
algorithm that successively seeks the best merge of two row or column categories.
First, we examine its complexity and compare it with the exhaustive scanning of
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all partitions. To acquire some knowledge about possible merging criteria, the effect
of the merging of two categories on a large choice of association measures has
been examined analytically in Ref. 25. We recall here the main findings of this
theoretical analysis. Then, we investigate the efficacy of the algorithm, by provid-
ing details of simulation results briefly presented in Refs. 25 and 27. Finally we
discuss the generalization of the simultaneous merging process to more than two
variables and evoke some alternative merging strategies.

7.1. Complexity of the Simultaneous Merging Heuristic

This subsection compares the complexity of the heuristic to that of the exhaus-
tive exploration of all possible couples ~Pc , Px ! of row and column partitions.

For the exhaustive scanning, the number of cases to explore is given by #Pc#Px ,
that is, the number of row partitions times the number of column partitions.

Consider first the case of a nominal variable. The number B~a!� #P of pos-
sible partitions of its a categories can be computed iteratively by means of Bell’s28

formula B~a!�(k�0
a�1 �a�1

k � B~k!, setting B~0!� 1. Hence the number of cases to
browse is B~�!B~m! in the nominal case, which is, for instance, about 1.3{1010 for
� � m � 10.

For ordinal variables, hence for discretization issues, only adjacent groupings
are considered. This reduces the number of cases to browse. The number G~a!�
#A of adjacent groupings of a values is G~a! � (k�0

a�1 �a�1
k � � 2~a�1!. Thus, the

number of cases to explore is G~�!G~m! in the ordinal case. For � � m � 10 this
is, for example, 262,144.

For the heuristic, we can only give the maximal number of couples ~Pc , Px !
we may have to scan. The actual number of couples explored depends indeed on
when the stop criterion is reached. Assuming � � m, the upper bound is given, in
the nominal case, by

(
j�2

m �� j

2�� ��

2���(
i�2

� � i

2�� 1

Table V. Cross-validation classification success rates ~in percent!.

CART ChAID Arbogodaï

Dataset 1 � err Std. dev. 1 � err Std. dev. 1 � err Std. dev. 1 � werr Std. dev.

Iris ~3 cl.! 95.11 0.08 94.81 0.08 98.35 0.11 95.50 0.08
Flags ~6 cl.! 75.14 0.40 75.21 0.40 78.83 0.41 83.37 0.34
Breast ~2 cl.! 97.54 0.17 97.19 0.15 98.17 0.13 98.08 0.17
Car ~4 cl.! 83.47 0.32 93.62 0.23 86.75 0.32 87.81 0.31
Ionosphere ~2 cl.! 92.10 0.19 89.68 0.20 89.34 0.3 93.36 0.25
Pima ~2 cl.! 84.44 0.38 83.55 0.38 81.39 0.38 81.20 0.40
Wine ~3 cl.! 97.71 0.19 97.99 0.19 98.09 0.07 95.21 0.20
Zoo ~7 cl.! 87.57 0.22 85.99 0.26 88.61 0.12 94.04 0.16
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that is

�~�2 � 1!� m~m2 � 1!

6
�
~m � 1!�~� � 1!

2
� 1

In the ordinal case, it reads

~� � m � 1!~� � m � 2!

2
� 1

For m � � � 10, these bounds are, respectively, 736 and 172.
Figure 3 and Table VI show how the relative efficacy of the heuristic increases

with the number of initial categories. The values reported concern square tables. It
is worth mentioning that the seemingly exponential increase in the number of cases
reported for the heuristic concerns the upper bound. Practically, the effective num-
ber of cases browsed will be much lower.

7.2. Summary of Analytical Results

Because the heuristic merges at each step two categories only, we studied in
Ref. 25 the effect of such a grouping on a choice of association measures, namely
Pearson’s X 2 and the Likelihood Ratio G2 Chi-square statistics, Tschuprow’s t,

Figure 3. Complexity versus size of the square table ~for heuristic, values reported are upper
bounds!.
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Cramer’s v, Goodman and Kruskal’s t, Theil’s u, Goodman and Kruskal’s g, Ken-
dall’s tb , and Somers’ d. The latter three are ordinal measures and apply therefore
only to ordinal variables. The formula of the indexes are recalled in the Appendix.

Table VII summaries the results established in Ref. 25. For the ordinal mea-
sures that take their values in @�1,1# , we report effects on the absolute value of the
measure and consider, indeed, only the merging of two adjacent categories.

For our purpose, we expect an improvement of the criteria when two equiva-
lently distributed values are merged. We do not recommend, therefore, criteria that
can remain unchanged after such a merge. Thus, Chi-square statistics that cannot
be increased with a merge, but also the Cramer v and the asymmetrical PRE mea-
sures ~the Goodman–Kruskal t and the Theil u! are not suited for our needs. Among

Table VI. Number of configurations explored.

Nominal case Ordinal case

� � m Exhaustive Heuristic Exhaustive Heuristic

2 4 4 4 4
3 25 15 16 11
4 225 39 64 22
5 2,704 81 256 37
6 41,209 146 1,024 56
7 769,129 239 4,096 79
8 17,139,600 365 16,384 106
9 447,195,609 529 65,536 137

10 1.345{1010 736 262,144 172
20 2.675{1027 6,271 2.749{1011 466
50 3.449{1094 101,676 3.169{1029 4,852

100 2.264{10231 823,351 4.017{1059 19,702

Table VII. Effect of a merge of two categories on a choice of association measures.

Merge of response values Merge of predictor values

Criteria Asym. Not eq. dist. Equiv. dist. Not eq. dist. Equiv. dist.

Chi-square statistics
X 2 , G2 � � � �

Nominal association measures
Cramer’s v �/� �/� �/� �/�
Tschuprow’s t �/� � �/� �
G-K t * �/� � � �
Theil’s u * �/� � � �

Ordinal association measures
G-K g �/� � �/� �
Kendall’s tb �/� � �/� �
Kendall’s tc �/� �/� �/� �/�
Somers’ d * �/� � �/� �
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the ordinal measures, only the Goodman–Kruskal g and the Kendall tb satisfy the
requested condition. Among the measures studied, the t of Tschuprow that fits the
condition and can be used with both ordered and unordered values is our preferred
choice.

7.3. Reliability of the Joint Merging Heuristic

The purpose of this section is to assess the reliability of the results provided
by the heuristic. A series of simulation studies have been run to investigate two
aspects: ~1! the proportion of global optima missed by the heuristic and ~2! how
far the solution of the heuristic is from the global optimum.

Several association measures have been examined. We report outcomes for
the t of Tschuprow, the t of Goodman and Kruskal, and the tb of Kendall. Among
the measures considered ~simulations have been run for all the measures listed in
Table VII! the t of Tschuprow has been retained because it provides the worse
scores for both the proportion of missed optima and the deviations from the global
optima. The t of Goodman and Kruskal has been selected as a representative of
the asymmetrical PRE ~proportion of reduction in error of prediction! measures.
Likewise, the tb of Kendall has been selected to represent the ordinal measures.

The comparison between quasi and global optima is done for square tables of
size 4, 5, and 6. Above 6, the global optimum can no longer be obtained in a
reasonable time.

For the t of Tschuprow and the t of Goodman and Kruskal, we report respec-
tively in Tables VIII and IX results for the nominal case as well as for the ordinal
case. The tb of Kendall being an ordinal measure, Table X exhibits only figures for
the ordinal case.

For each measure, size, and variable type, 200 contingency tables have been
randomly generated. Each table was obtained by distributing 10,000 cases among

Table VIII. Simulations: t of Tschuprow.

Tschuprow Nominal Ordinal

Size 4 � 4 5 � 5 6 � 6 4 � 4 5 � 5 6 � 6
Nonzero deviations 39.5% 62.5% 74.5% 23.5% 36% 46.5%

Maximum 0.073 0.074 0.077 0.077 0.063 0.108
Mean 0.025 0.023 0.028 0.019 0.019 0.012
Standard deviation 0.015 0.014 0.016 0.014 0.016 0.015
Skewness 0.986 0.979 0.598 1.674 0.972 3.394

With zero deviations
Mean 0.010 0.015 0.021 0.005 0.007 0.006
Standard deviation 0.016 0.016 0.018 0.011 0.013 0.012
Skewness 1.677 1.062 0.615 3.168 2.211 4.457

Relative deviations
Maximum 0.168 0.198 0.221 0.179 0.194 0.307
Mean 0.079 0.077 0.093 0.063 0.066 0.046

Mean initial association 0.260 0.240 0.226 0.263 0.244 0.228
Mean global optimum 0.340 0.316 0.303 0.301 0.275 0.250
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its � � m cells with a random uniform process. This differs from the solution used
to generate the results given in Ref. 25, which were obtained by distributing the
cases with nested conditional uniform distributions: First a random percentage of
the cases is attributed to the first row, then a random percentage of the remaining
cases is affected to the second row and so on until the last row; the total of each
row is then likewise distributed among the columns. The solution retained here
indeed generates tables that are closer to the uniform distribution and should there-
fore exhibit lower association. As will be shown, low associations are the less
favorable situations for the heuristic. Thus, we can expect the results obtained

Table IX. Simulations: t of Goodman and Kruskal.

G&K t Nominal Ordinal

Size 4 � 4 5 � 5 6 � 6 4 � 4 5 � 5 6 � 6
Nonzero deviations 5% 6.5% 12% 6% 19% 32.5%

Maximum 0.013 0.031 0.029 0.076 0.077 0.059
Mean 0.007 0.010 0.008 0.025 0.016 0.013
Standard deviation 0.004 0.009 0.009 0.021 0.016 0.012
Skewness �0.308 1.004 1.181 1.107 2.361 1.908

With zero deviations
Mean 0.0004 0.0007 0.0010 0.0015 0.003 0.004
Standard deviation 0.0018 0.0033 0.004 0.008 0.009 0.009
Skewness 5.323 6.471 5.137 6.685 5.040 3.255

Relative deviations
Maximum 0.142 0.296 0.318 0.420 0.518 0.401
Mean 0.062 0.091 0.079 0.216 0.168 0.149

Mean initial association 0.074 0.060 0.048 0.073 0.060 0.050
Mean global optimum 0.148 0.128 0.113 0.118 0.098 0.084

Table X. Simulations: tb of Kendall.

Kendall tb Ordinal

Size 4 � 4 5 � 5 6 � 6
Nonzero deviations 19% 24.5% 32%

Maximum 0.596 0.597 0.542
Mean 0.235 0.182 0.140
Standard deviation 0.195 0.190 0.157
Skewness 0.076 0.598 0.652

With zero deviations
Mean 0.045 0.045 0.045
Standard deviation 0.125 0.123 0.111
Skewness 2.775 2.849 2.445

Relative deviations
Maximum 1.954 1.970 1.982
Mean 0.355 0.259 0.074

Mean initial association ~abs. value! 0.094 0.078 0.064
Mean global optimum ~abs. value! 0.256 0.236 0.215
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with this random uniform generating process to provide some upper bounds for
the deviations from the global optima.

Tables VIII–X exhibit, for each series of tables generated, the proportion of
optima missed and characteristic values ~maximum, mean value, standard devia-
tion, skewness! of the distribution of the deviations between global and quasi
optima. Relative deviations, of which the maximum and the mean value are
reported, are the ratios between deviations and global optima. The last two rows
give, respectively, the average of the initial values of the criterion and the mean
value of the global optima. In Table X, these two last figures are means of absolute
values because the tbs may be negative.

Additional insight for the Tschuprow’s t and Goodman and Kruskal’s t cases
is provided by Figures 4 and 5. Figure 4 shows plots of the 200 initial values, quasi
optima, and global optima for 6 � 6 cases. Figure 5 plots the 200 deviations against
the global optima.

Looking at Tables VIII–X, we see that the proportion of optima missed by the
heuristic is relatively important and tends to increase with the size of the table.
The proportion is somewhat lower for PRE measures ~the t of Goodman and
Kruskal!. This is probably due to the fact that PRE measures cannot be improved
by merging values of the predictor ~see Table VII!, which means that the group-
ings are, in this case, almost exclusively made on one ~the target! variable. Curi-
ously, however, the percentages of missed optima are, for PRE measures, larger in
the ordinal case than in the nominal one.

This high percentage of missed optima is luckily balanced by the small devi-
ation between the quasi and global optima. The mean value of the nonzero devia-
tions is roughly less than half the difference between the initial value of the criterion
and the global optimum. In the case of stronger initial associations than those gen-
erated here with a uniform random distribution, this ratio becomes largely more
favorable, that is, smaller. The level and dispersion of the nonzero deviations seems
to remain stable when the size of the table increases. These deviations tend natu-
rally to be larger when the association measure provides larger values. Inversely,
the relative deviations take larger values when the association measure tends to
zero.

Finally, let us recall that the tb of Kendall takes its values in @�1,1# . The
deviations may thus exceed the absolute value of the global optimum when the
quasi and global optima are of opposite signs. This explains why some maximal
relative deviations are greater than one.

Globally, the outcomes of these simulation studies show that the cost in terms
of reliability of the heuristic remains moderate when compared with the dramatic
increase of performance.

7.4. Multidimensional Grouping

In supervised learning we are interested in the best way of using the predic-
tors to discriminate between the values of the response variable. Arbogodaï, like
other tree algorithms, proceeds by partitioning the predictor values in order to
reduce as much as possible the uncertainty on future responses in each class. At
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each step of the growing process, a node is split according to a single predictor.
Interaction effects are introduced by successive splits along a stem. This has the
advantage of generating an easily described partition. Some interactions, how-
ever, are not representable by trees. Hence, to allow for additional interaction
effects, it may make sense to consider splits defined simultaneously on several
predictors. Generalizing Arbogodaï in this way would indeed require extending
the simultaneous row-column merging process to the more general multidimen-
sional joint merging case.

At the limit, if we consider all predictors simultaneously with the response,
the multidimensional merging process, assuming it is practicable, would provide
some optimal partition without resorting to a tree.

Our heuristic is intended for the simultaneous partitioning of two variables
only. There is no straightforward way to extend it to the general multivariate case
with more than two variables. On the one hand, it would require the definition of a
suitable multivariate association measure, that is, an index for a multiway contin-
gency table. Coefficients like the multiple correlation measure the association
between one ~target! variable and the set of predictors. Hence, they do not mea-
sure globally the association between all variables. On the other hand, multiplying
the dimensions of the table would dramatically increase the complexity of the heu-
ristic and, hence, render it unusable.

A solution seems practicable, nevertheless, when we are in presence of one
target variable and a set of predictors. In the spirit of the multiple correlation, the
multivariate case can, in this setting, be handled by taking as column variable the
composite variable defined by cross-tabulating the predictors. The optimal group-
ing of the row target variable and the composite predictor provides then simulta-
neously the optimal conditional partitions of the predictors and the target variable.

Let us illustrate with an example. The target variable y is dresses’ quality
~high, poor! and the predictors are x1 the type of dresses ~W � women, M � men,
C � children! and x2 the family income ~L � low, M � medium, H � high!. An
optimal solution may then look as depicted in Table XI.

In this example, we see that medium and low family incomes are grouped
together for men and children whereas medium and high family incomes are
grouped for women. Likewise, all three categories, women, men, and children, are
grouped together for either high income or low income. The interactions between
type and income that define these two classes clearly cannot be represented in tree
form. This demonstrates the usefulness of such a multivariate approach.

Table XI. An aggregated multivariate table.

Type: W W M C W M M C C
Quality Income: M H H H L L M L M

High 50 10
Poor 5 100
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7.5. Alternative Merging Strategies

The heuristic discussed aims at finding the optimal way to merge row and
column categories in a contingency table. The adopted strategy focused on the
maximization of the association. Other criteria may obviously be considered and
should be investigated. For instance, when the data collected in the table are a
sample of a larger population, the association computed is an estimate and one
should then also care about its standard error or its significance level. Beside this
aspect we are presently working on a strategy to find an optimal aggregation under
some constraints. Indeed, the objective of the reduction of the size of the table is to
avoid cells with low frequencies that provide unreliable information. Therefore, it
is worthwhile to be able to maximize, for instance, the association under a con-
straint on the minimal cell frequency. On the algorithmic side, we are developing a
top-down divisive approach that, starting from the completely aggregated table,
will iteratively split rows or columns. We expect such a top-down approach to be
more efficient when the number of row and column categories becomes large.

8. CONCLUSION

To conclude, we would like to point out that the Arbogodaï method is well
suited for mixed nominal and ordinal multivalued attributes because the merging
of any or only adjacent values can be set on the fly. It is also able to handle simi-
larly nominal and ordinal, hence quantitative, target variables. Thus, Arbogodaï
could be seen as some sort of regression tree. The originality is that, unlike, for
instance, CART, which generates point predictions for each leaf, Arbogodaï would
provide interval predictions. The multiconclusion of an Arbogodaï rule can, hence,
be seen as a generalized interval for qualitative responses. Finally, let us mention
that we are presently designing further experiments for comparing Arbogodaï with
other tree methods and especially CHAID and CART. This aspect requires careful
investigation. Indeed, the parameterization of the trees ~depth, pruning, stopping
rules, etc.! plays a crucial role in the classification performance. We are trying,
therefore, to set up rigorous conditions that would ensure more fair and, hence,
more useful comparison results. We also plan to investigate the relationship to the
minimal description length ~MDL! principle,29 as the optimally reduced tables
can be seen as theories that best describe, locally at each node, the relevant knowl-
edge about the relationship between each attribute and the target variable.
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APPENDIX

Here we present formula of the association criteria considered. See, for exam-
ple, Ref. 30 for more details. We denote by y the response row variable and by x
the predictor column variable.

Chi-Square Statistics

Pearson: X 2 �(
i
(

j

~nnij � ni{ n{j !2

~nni{ n{j !

Likelihood ratio: G2 � 2(
i
(

j

nij log� nnij

ni{ n{j
�

Association Measures Based on Pearson Chi-Square

Tschuprow’s t: t � � X 2

nM~� � 1!~m � 1!

Cramer’s v: v � � X 2

n~min$�, m%� 1!

Nominal PRE Measures

Goodman–Kruskal t: tyRx �

n(
i
(

j

nij
2

n{j
�(

i

ni{
2

n2 �(
i

ni{
2

Theil’s uncertainty u: uyRx �

n log2 n �(
i
(

j

nij log2� ni{ n{j
nij

�
n log2 n �(

i

ni{ log2 ni{

Ordinal Association Measures

Let hc , hd , hx , and hy be, respectively, the number of pairs $~xi , yi !, ~xj , yj !%
with a concordant ranking, that is, xi � xj and yi � yj , with a discordant ranking,
that is, xi � xj and yi � yj , with a tie on x only and with a tie on y only.
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Goodman–Kruskal g: g �
hc � hd

hc � hd

Somers’ d: dyRx �
hc � hd

hc � hd � hy

Kendall’s tb : tb �
hc � hd

M~hc � hd � hx !~h
c � hd � hy !

Kendall’s tc : tc �
hc � hd

htot
� min$�, m%

min$�, m%� 1�

718 ZIGHED ET AL.


