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ABSTRACT

Robust outlyingness indicators provide a more reliable alternative to least
square diagnostics. This paper explains why and illustrates this superiority with a
simulation study.

1. INTRODUCTION

This paper deals with outlying data in linear regression. It provides a short
comparative discussion of the scope and limits of the main classjcal (Cook, 1977,
Belsley et al. 1980, Cook-Weisberg, 1982, Chatterjee-Hadi, 1986) and robust
(Rousseeuw-Leroy, 1987) indicators of outlyingness. The conclusions of this dis-
cussion are then illustrated with the results of a simulation study.

Due to the specific role of the dependent variable, we can distinguish two kinds
of atypical data inregression : those which are outlying in the space of the explanatory
variables and those which show an atypical response to the explanatory variables.
The former are generally called high leverage points and the latter outliers.

This distinction is essential to evaluate correctly the perverse effects that may
tesult from the presence of atypical data. Indeed, high leverage points and outliers
affect differently the coefficient estimates, and the usual synthetic adjustment
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measures (standard deviations, R®, Student’s t, F, Durbin-Watson, etc...). Thus,
though there exist diagnostic measures, like the Cook distance, which are intended
to detect atypical data independently of their nature, we shall also focus on specific
outlier and specific high leverage indicators. Classical and robust outlyingness
indicators are discussed in Section 2, and their performance on a simulated data set
is commented upon in Section 3.

2, OUTLYINGNESS INDICATORS

In this section we describe the indicators used in this article. The indicators can
be grouped into three categories: those designed for detecting outliers, those designed
for detecting high leverage points, and those intended to detect influential data
independently of their nature. The regression model considered is:

y=XB+e

where y is the n vector of the dependent variable, X the n X p matrix of p independem
variables, B the p vector of coefficients, and € a vector of independent errors, which
we assume to be symmetrically distributed and independent of the X variables.

2.1. Outliers detection

Outliers are observations (¥;,x;) which significantly deviate from the model

governing the bulk of the data. The classical approach to the detection of outliers
focuses on standardized forms of the OLS residuals r =y — ¥ = (I —H)y, where H
is the hat matrix X(X'X)"X’. The two main classical outliers indicators are the

standardizedresidualri = r,»lé, where & isthe OLS standard error, and the studentized
residual r! =rJ/o\1 —h,, where h; is the i-th diagonal term of H.

The drawback to this classical approach is that the OLS reference hyperplane
is itself affected by the outliers. A natural alternative way is to refer to a robust
regression hyperplane. Several robust regression estimators have been proposed in
recent literature (see for instance Hampel et al., 1986, ch. 6 and Rousseeuw-Leroy,
1987). M-estimators with a bounded influence function (Mallows and Schweppe’s
type estimators) limit the impact of any single observation. To represent this class
of estimators we shall consider the Mallows optimal estimator. In the case of scaled
residuals, a Mallows estimator T), is implicitly defined by

Zox)y (v -xTy)x =0

where (") is the Huber function and o(x) a weight function which limits leverage
effects. For a given bound on the sensitivity, the optimal estimator is obtained by
choosing () so as to maximize the efficiency of T, under the c assical assumptions
of normality (see Hampel et al., 1986, ch. 6, for more details).
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Another popular robust regression estimator is the Least Median of Squared
residuals (LMS) estimator of Rousseeuw (1984). This is a high breakdown point
(50%) estimator. It has thus the advantage, from the diagnostic point of view, to
protect against a high number of bad data points, and not onl y against the individual
effect of each observation. The LMS estimator is the solution T} ys of the problem:

min (med(y, - x,'T)*)
T i

Robust outliers indicators are provided by the standardized residuals from a
robust fit, i.e. by:

r

5 1.roh
¥ wreh T %
~ Urfu‘.v

where r,,, is the residual from the robust fit, and G,., the corresponding robust scale
estimate.

2.2. Leverage effect indicators

High leverage points are outlying observations in the factor space. Classical
measures of outlyingness are based on the Mahalanobis distance DM ; between x, and
the mean point x. The square of the distance DM, can be written (Belsley et al. (1980,
pp 66-67))

DM} =(n—1)(h, - l/n)

Thus DM? is simply an increasing linear transformation of 4,, which provides an
equivalent leverage indicator. For inference purposes, we shall however prefer the
DM?, which can be compared to a Chi-2 with p-1 degrees of freedom (ie. the dis-

tribution of DM when the x,’s are drawn from a multinormal distribution.)

Here again, the drawback to this classical measure is the sensitivity to high
leverage of the center ¥ and the covariance estimate (1/(n — 1)X’X, where X is the
centered data matrix.

One alternative is to use robust estimators. For instance, Rousseeuw-Leroy
(1987, pp. 258-265) consider the Minimum Volume Ellipsoid (MVE) which covers

- 50% of the data. Obviously, its center ¢(X), is a robust center estimate and the
‘covariance matrix Cyyy - computed on the 50% covered data points is arobust estimate

of the covariance matrix. A robust leverage indicator is thus provided by the MVE
distance, defined by:
4

DMVE? = (x, — ¢ (X)) Crgelx, = (X))

%ccording to Rousseeuw-Leroy (1987, p. 260), the cutoff of this indicator might be
aken equal to Xp. 515
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The weight function w(x) used in M-estimator to downweigh high leverage
points can also be used as a leverage indicator. Practically, it seems however
(Ritschard et al., 1988) that the 1/e(x;) behave very similarly to the h;, and suffer

thus from the same drawback.

2.3. Global Indicators

Classical global indicators focus on the influence of each observation rather
than on their outlyingness.

The Cook distance CD, (Cook, 1977), measures the distance between the
prediction vector obtained with () and without (¥,) the i-th observation:

CD} =5 =0 (= Fu)
It can also be viewed as the distance between the estimates of the regression coef-
ficients  and B, for the metric (1/p&*)X'X. Cook (1977) suggests that the CD? be
compared to a central F distribution with p and n — p degrees of freedom. This
produces however exaggeratedly high cutoff values. Practically, a cutoff of one
seems more reasonable (Cook-Weisberg, 1982).

The CD}? can be expressed as follows in terms of the studentized residual r; and
the classical leverage indicator A; :

2_.l e hn
CD; _p(r,-) i

i

High CD} requires large values of both (r,-')2 and h,. Thus, for instance, the Cook

distance can not detect high leverage points standing on the regression hyperplane.
Furthermore, like other classical diagnostic measures, it becomes unreliable in the
case of multiple atypical data.

A robust alternative is provided by the resistant diagnostic (RD,) of Rousseeuw
(cf. Rousseeuw-Leroy, 1987, pp. 238-240). Unlike the classical measures, the RD;
focuses directly on the relative position of each observation. It is based on a concept
of relative residual to an hyperplane, i.e. rd(B) = r(B) /med,| r (B)I , where r(B)is
the residual to the hyperplane. The resistant diagnostic RD; is then simply the fol-
lowing normalized form of this maximal relative residual u, = maxp rd,(P)

u;

RD,=
" med y;
J

Practically, the RD; is computed by taking the maximum of the rd; on the set of
hyperplanes passing throughp of the n data points. Rousseeuw-Leroy (1987)propose
a cutoff value of 2.5.
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3. A SIMULATION STUDY

From the previous discussion, robust outlyingness indicators appear to be
conceptually superior to classical measures. This superiority is here illustrated by
showing the values of classical and robust indicators for a simulated multiple
regression problem with three explanatory variables.

The data set contains 50 generated observations with both multiple high
leverage points and multiple outliers. The values of the three predictors x were
obtained by means of autoregressive processes. They look thus as typical time series
data. By construction we can expect the first observation as well as the last ones to
have high leverage. According to a simulafed structural change in the autoregressive
processes for the five latest data, the leverage effect of the last points should even
be somewhat higher.

A main model with independent normal errors was used to generate 80% of the
values of the dependent variable y. Outliers were introduced by generating the
remaining 20%, i.e. data 5, 15, 25, 35, 45, 46, 47, 48, 49 and 50 with a second model
which differs from the first by the values of the B coefficients.

The values of a choice of indicators computed on these data are given in Table 1.
These results have been obtained with the following softwares: ROBETH (Marazzi,
1985) for the Mallows estimates and weights; PROGRESS (Leroy-Rousseeuw,
1984) for the LMS estimates and the resistant diagnostic RD ; PROCOVIEV
(Rousseeuw-Van Zomeren, 1987) for the MVE distance. Stars designate values
exceeding the chosen cutoff.

For the OLS and Studentized residuals, the cutoff is set at 1.3, which is here
justified since we know that there are 20% outliers. For the Mallows and LMS
residuals, which are standardized with a robust scale estimate, we choose the cutoff
ofa 1% significance normal test, i.e. 2.4. The cutoff retained for the classical distance

DM and the robust distance DMVE is respectively (x3,05)"" = 2.15 and (32 o00)"” =

3.37. The "Mallows" leverage indicator is a standardized inverse of the weight w(x),
i.e. med(e(x))/@(x). We choose the cutoff 2 which points to data with weight less
than half the median weight. For the global diagnostics we retained respectively 1
and 2.5 for the Cook distance and the resistant diagnostic RD.

A quick glance at Table I shows that;

robust residuals detect correctly all outliers while least squares residuals not only
miss true outliers, but also designate good data as outliers;

the classical distance and the M-estimator weights o(x) behave analogously: both
seem to miss some leverages. The robust distance DMVE points them out much
more clearly;

global diagnostics provide only limited information. The Cook distance detects
nothing with the retained cutoff value and the resistant diagnostic points out only
some high leverages.
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J 4. CONCLUSION

By construction robust outlyingness indicators appear to be superior to classical
| ones. Our simulation study exhibits this superiority. It also shows that usual cutoff
values for classical indicators should be lowered when multiple atypical data can be
expected.
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ABSTRACT

A comparison of five possible statistics for tgsting the null hypothesis Ho:p = py,
with pg not necessarily 0, is undertaken, using the modified maximum likelihood
estimators of Tiku and Gill (1989). Symmetric and asymmetric Type II censored
samples are considered, as is the robustness of these statistics to departures from
normality.

I. INTRODUCTION

\ Suppose that the random variable (X, ¥) has a bivariate normal distribution

BN(Wy. Wy o}, o%; p). Incertain experimental situations, a number uf the smallest

~ and largest observations on one of the two variables, say ¥, may not be available. For

~ example Harrell and Sen (1979), in an cxperiment designed to study the relationship
between arteriosclerosis and length of life, a number N of thesus monkeys are fed an
atherogenic diet. An autopsy is performedonthe K < N monkeys which die during the

term of the experiment in order to measure X: (he amount of fatty plague in the aorta.
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