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This study is a condenscd and revised version of two
previous papers, one by Ritschard [17] on computable qualita-
tive comparative stalics, the other by Rossier [21] on a geomet-
ric approach of economic modeling. Since qualitative methods
deal with open intervals represented by signs (+.,—), and the
proposed geometric methods are concerned with closed inter-
vals, the main purpose of this unified version is to give an
overview of the knowledge one can derive when the basic
information about the parameters of a large economic model is
given by intervals. In this general framework, quantitative
information derived from econometric models appears as a
particular case of closed intervals.

However, it remains a conceptual distinction between
gualitative and geometric approaches, coming [rom the treat-
ment of exogenous variables, which are considered like parame-
ters in geometric formulation. For this reason, Section | of this
paper emphasizes qualitative methods in comparative static
analysis, Section 2 being devoled more specifically to geometric
methods applicable to linearized models.

0. Introduction

Broadly speaking, comparative static analysis is
concerned with the study of how, in a given eco-
nomic model, endogenous variables react to desig-
nated changes in the level of exogenous variables
or parameters. In the case of a fully quantified
model, such an analysis may be carried out by
solving it numerically once before and once after
the considered change. Proceeding so, as well as

* A preliminary version of this paper has been presented at the
7th Conference on Problems of Building and Estimation of
Large Econometric Models, Polanica Zdroj, Poland, 3-5
December 1980.
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looking into a quantified impact multipliers ma-
trix. will not allow, however, to distinguish be-
tween the conclusions stemming out from the par-
ticular empirical content of the model and those
emerging from its theoretical background. This is
precisely the aim of qualitative and geometric
methods which, by dealing with the model in its
general formulation, take into account only robust
information, ie. the invariant one, in order to
determine its logical implications.

For marginal changes, one way to achieve a
qualitative comparative static analysis is to de-
velop formally the impact multipliers in terms of
the derivatives of the model relations. This should
allow us to see, for instance, to what extent a
priori information about the derivatives would
suffice to determine the range of some impact
multipliers. Such an analytical approach 1s gener-
ally used to determine qualitative properties of
simple macro-models.' It also leads to fruitfull
results when applied to models, such as expendi-
tures systems, issued from som underlying optimi-
zation problem. Let us notice however that the
richness of the results in this last case follows from
the fact that the model’s relation derivatives can
themselves be expressed in terms of the second
order derivatives of the objective function. 2 Nev-
ertheless, as the size of the model increases, i.e. the
number of relations, it becomes rapidly tedious or
even impossible to write down such formal expan-
sions of the impact multipliers. A computer, for
instance, would be of few help.

An alternative approach to comparative static
problems consists in studying systematically the
implication of some specific kind or family of
given informations. This is the approach retained
in this paper which is devoted to the study of what
can be said from the knowledge of the intervals of
the model relations derivatives. More specifically,

! Examples can be found, for instance in [7, pp. 168-177] or in
[24].

2 These second order derivatives have naturally to satisfy the
second order conditions of the considered optimizing prob-
lem.
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efficient tools for analyzing this kind of informa-
tion will be proposed.

Among the specific literature on qualitative
methods, most of the studies aim at determining
the general conditions under which significant
conclusions will follow from the qualitative as-
sumptions. Hence they don’t set up efficient tools
for analyzing given models. Along this line, one
can quote the standard forms of the Jacobian
brought into focus by Lancastér [10,11] and Gor-
man [8]. Other important studies use cycles and
chains algebra (see for instance [2]). An excellent
survey of all these studies is found in [1], (see also
[19]). The pioneering work of Samuelson [22] who
established the foundations of qualitative calculus,
and the developments of this calculus by Lancas-
ter [12,13] are, as far as we know, the only studies
in which tools for a systematical analysis of quali-
tative assumptions are proposed.’® The suggested
techniques are based, however, on an elimination
principle for which the starting set increases ex-
ponentially with the size of the analyzed model
(see Section 1.3 hereafter). The applicability of
these tools remains therefore very limited, and this
makes, from our point of view, the relevance of
developing more efficient technics applicable to
large economic models, like those which are out-
lined in Section 1.

In Section 1.1, we will formalize the problem
and show why comparative static analysis should
always begin with a study of the causal ordering of
the model. In Section 1.2, an_efficient algorithm
for determining the so called qualitatively linked
variables will be proposed. In Section 1.3, we will
show how the Samuelson-Lancaster qualitative
calculus can be improved by means of a branch-
and-bound procedure, Section 1.4 illustrates an
application of these technics to an economic model,
which, for pedagogic purposes, has been choosen
quite small.

The geometric approach of qualitative conclu-
sions with open intervals or signs has been made
by Lancaster [12] from a theoretical point of view,
and practically it leads to the qualitative calculus
reported in Section 1. Hence Section 2 is only con-
cerned with closed intervals. It aims to point out
some main properties of the geometric figures
generated, in the space of endogenous variables,

? Analysis of macro-models by means of these tools can be
found in [19] and [23].

by sets of intervals interconnected in linear rela-
tions. Such figures will be called polytopes by
analogy to the well-known convex polytope notion
(see for instance [9]), commonly used in linear
programming and more recently in data analysis
(see for instance [15]). But to our best knowledge
of the economic literature, the definition and study
of the polytopes reported in Section2 were first
introduced in [20, Chapter IX] and developed for
algorithmic issues in [21].

Section 2.1 defines the methodology adopted
while some main properties of polytopes are given
in Section 2.2. Section 2.3 is devoted to the projec-
tion of polytopes on selected axes and planes. The
two last sections deal with algorithmic remarks, an
illustration and some practical considerations on
the interpretation of the projections. ‘

Finally, our view of the future of qualitative
and geometric methods will help to conclude.

1. The qualitative approach
1.1. Causal analysis and qualitative calculus

Let us consider an economic model formally
represented by a system of m relations:

h(y,z)=0 (1.1)

which relates the equilibrium level of the m endog-
enous variable y to the state of the environment
represented by the & exogenous variables z.

By giving the sign (positive, negative or zero) of
each element of the matrix

8h | 9k
dy” 1 az’' |’

(1.2)

we define the so called gualitative structure of the

.model. The impact multipliers matrix, in which

one is interested when doing comparative statics,
can be expressed in terms of the two matrices in
(1.2):

v _ _(0om)"om
RTINS »

Thus the problem considered is that of providing
information about the content of the matrix (1.3)
when only the knowledge of the qualitative struc-
ture is taken into account.

Obviously this information can only concern
the sign content of the matrix dy/3z’. The most
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significant result one can obtain for a multiplier
dy,/0z, will be, therefore, the unambiguous de-
termination of its sign. If so, the multiplier 3y, /9z,
is called qualitatively determined. It means that its
sign (positive, negative, or zero) is determined
regardless of the numerical value that might take
the non-zero elements of the matrix (1.2) (pro-
vided that these values are compatible with the
qualitative structure analyzed).

If a multiplier 9y, /9z, is not qualitatively de-
termined, then its sign may be positive, negative,
or zero depending on the particular numerical
determination of the matrix (1.2). Note that in this
case the qualitative structure allows for a possible
zero value of 3y, /9z,. It is important to distinguish
this kind of possible zeros from gqualitative zeros,
where the latter correspond to qualitatively null
determined multipliers, i.e. multipliers which are
identically null for the given qualitative structure.

We first deal with the setting up of these quali-
tative zeros. A multiplier is identically null:

dy,/9z; = 0, (1.4)

if and only if in the model (1.1) y, is determined
independently from the exogenous variables z;, i.e.
if and only if z; has no causal effect on y,. Thus the
problem is here simply to determine, for each
exogenous variable z;, the set of endogenous varia-
bles which it does not influence. This can easily be
done through a causal analysis of the model, for
which efficient tools related to graph theory have
recently been developed. (See for in-
stance [4]; for a computer program see [5,6,18].)

Let us just recall that the causal outline of a
model of type (1.1) corresponds to its block recur-
sive decomposition. It is characterized by the block
triangular form into which the matrix 3k /9y can
be transformed through independent permutations
of rows and columns. Let

Bt 0
D= 5 (1.5)
Dpl Dpp

where the diagonal submatrices D, are square and
irreducible, be this block triangular matrix. The
relations #%( y, z) = 0 corresponding to the rows of
a block D,, are the smallest subset of relations
which determines the endogenous variables y* cor-
responding to the columns of D,,. Indeed all
variables y/, j <k, can be considered as exogenous

in A*( y,z) = 0 whereas the variables y/, j > k, don’t
appear in the relations 2*( y,z)=0.

By considering this decomposition, it can be
shown that a variable y, of y* is not influenced by
an exogenous variable z_ if and only if

(i) 9h*/3z, =0 and

. ; . (1.6)
(i1) 0h//9z, = 0 for all j for which
one can find a sequence of non-zero matrices

Dy, D, ... D

T

Note that these conditions, which can easily be
used to determine the qualitative zeros of dy/0z’,
are based only upon the knowledge of the zero
entries of (1.2). Qualitative zeros are therefore
more general properties of a model than those
studied in the remainder of the paper.

For a generic exogenous variable &=z, the
corresponding multipliers vector dy/de is a solu-
tion of the following linear system:

oh dy 0k
dy’ da da’ (1.7

From the condition (1.6), if 3y'/da is the subvec-
tor of all qualitative zeros of dy/d«, then (1.7) can
be written as follows through suitable permuta-
tions:

1 1
koo || 0
ayl aa
= 1.8
w o ||| | Y

ayl' ayZ’ aG‘. _E

where none of dy%/da components is a qualitative
zero. Since

2 1
L) Sy (1.9)

dy?/0a is a solution of the subsystem

o 0y o
ayZ' Ba - da ’

(1.10)

which doesn’t give rise to qualitative zeros. From
here on we shall thus, without loss of generality,
only consider systems without qualitative zeros.

By considering the following qualitative matrix
and vector:

A=(a;), i,j=1,..,m,

b=dh)s relacam (1.11)
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with

a,;,=+e—"=0, bi—+=>%20,
¥ da
ah,; dh,

4= g <0 b= —egl<o,
ahi hi_

U—owa—%_o, b, =0 T:O,

and the following obvious qualitative operations:

sum| + — 0 r
1 + ¢ 4+ w
= T = =
0 d = 0w
T r r r r
product| + — (0 r
+ + - 0 r
= - + 0 r
0 0O 0 0 0
T r r O r

where an r stands for undetermination, we have
thus to face the problem of solving a qualitative
system of the form

Ax= —b. (1.12)
By setting
H=(b'A4), o' =(+ix), (1.13)

we can equivalently consider the more convenient
homogenous form of (1.12):

Hv=0. (1.14)

A qualitative vector s is a solution of (1.14) if
and only if it satisfies

his=Zh, s, =0orr, i=12,...,m, (1.15)

where hj stands for the ith row of H. Such a
solution corresponds to a sign content of 9 y/da
compatible with the qualitative structure con-
sidered.

In general a qualitative system will admit more
than one solution. Let us denote by S the set of all
possible solutions with s, = + according to (1.13).
A multiplier 3y, /de will be qualitatively de-
termined if the corresponding element s, , has the
same sign in each s of S. For instance all compo-
nents of 9y /da will be qualitatively determined if
and only if card(S)=1, i.e., if and only if (1.14)
admits a unique solution.

More generally we will say that two variables v,
and v; are qualitatively linked if and only if L and
5, are aIways of the same sign, or always of oppo-
site signs in all s of S. In the first case they will be
called positively linked and in the second negatively
linked. Remembering (1.13) qualitatively de-
termined variables will be for instance qualita-
tively linked with v,.

Qualitatively linked variables can easily be de-
termined by examining the set S. The difficulty is,
however, precisely to obtain this set S. Before
studying this problem in Section 1.3 we show in
Section 1.2 how qualitatively linked variables can
be set up directly. As a byproduct a qualitative
aggregation procedure is proposed, which allows
to reduce the size of the qualitative system being
analysed.

1.2. Qualitatively linked variables and qualitative
aggregation

It can be shown that the relation o, Lo, “v, is
qualitatively linked with v;” defined on the p
variables v of an r relations quahtatwe system*

Hu =0, (1.16)

Is an equivalence (reflexive, symmetric and transi-
tive) relation. According to it the p variables v can
be partitioned into equivalence classes.

The qualitative link, positive or negative, be-
tween each pair of elements of a group of qualita-
tively linked variables v' can be summarized Slm-
ply by a sign vector g', of the same size as o', by
setting

4, =4, = U;L—c-vj
9:;=—q;=vL_ v (147)

where L, stands for “is positively linked with”
and L_ for “is negatively linked with”. With re-
spect to the set § of solutions without zero of
(1.16), q or —g', is the subvector s' correspond-
ing to ¢' in any solution s of .

The knowledge of the qualitative link ¢' for a
class o' together with that of the sign s, of only one
component v; of v' is sufflclent to determine the
signs s' of all variables v'. Assuming ¢, = +, we
have

Fi . (1.18)

* Note that no special assumption is made about the relative
size of p and r.
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One can think therefore to reduce the size of the
system (1.16) by considering only one variable of
o', Since all variables do not appear in all re-
lations, one way to preserve the full qualitative
information available about o' is to replace the
subvector o' of order p, by the qualitative aggre-
gate:.

ot =q"0". (1.19)
Assuming without loss of generality that v = (v"
v?"), the full vector v is thus replaced by

1”1
u*:[q ° ]:MD

DZ

(1.20)

where the ( p—p, + 1) X p qualitative aggregation
matrix M is defined as

(1.21)
0 +
Since the ordering of the matrix H columns
corresponds to that of the variables v, one can
consider aggregating H into the following r X (p
—p, + 1) matrix:

HM'=(H, | H,)M'=(H ' | H,;). (122)

Fore some rows 4/ = (k! | h?') of H, the product
h' g' might be, however, qualitatively un-
determined. According to (1.15) the corresponding
relations 4,0 =0 admit as solution any sign vector
s compatible with the qualitative link ¢', i.e., all s
for which s' = #¢'. Therefore, these rows A, don’t
provide any supplementary information and can
be eliminated.

If we designate by H** the matrix resulting
from the suppression of the rows /;, for which
kY ¢' is undetermined, the aggregated matrix H*
will be

H* = H**M". (1.23)

It can be shown (see [16, pp. 103-104]) that there
is a one to one correspondance between S and S*,
where S is the set of solutions without zero of
(1.16) and S* the set of solutions without zero of
the aggregated system

H*o*=0 (1.24)

where v* and H* are defined in (1.20) and (1.23).

Indeed we have
F=s o= E 5,

(1.25)
S* = (s*| s*=Ms,sE€S}.

All what has been said so far can easily be
generalized for the case of several groups of quali-
tatively linked variables. Let g°, i=1,..., K be the
qualitative links for K groups v'. To generalize the
aggregation rules (1.20) and (1.23), we simply have
to define the new aggregation matrix

The matrix H** in (1.23) will be obtained by
climinating from H the rows k; for which one of
the products h!'g’, j=12,...,K is qualitatively
undetermined.

It is important to notice here that this elimina-
tion of rows from H can lead to a matrix H* with
colums of zeros. In case all columns of H** corre-
sponding to a class v' of qualitatively linked varia-
bles are null, the column of H* corresponding to
the aggregate v* =v'q" will also be null from
(1.23). If so, the aggregate v} might be + or —
regardless of the sign of the other components of
v*, and will be called an independent variable or
aggregate, and the class v’ represented by of an
independent class.

Assuming o* = (0® | ©*') where o° is a sub-
vector of k independent variables, the set $* of
solutions of the aggregated system H*v* =0 can
easily be obtained from the set $* of solutions of

H%* =0, (1.27)

where H results from the suppression of the
columns corresponding to ©* in H*. Since all
elements of @ are independent variables the 2*
possible sign combinations of length k are admissi-
ble for o*, and thus each solution s* will give rise
to 2% solutions of the form

s*=(s% 1 54).
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We now turn to the setting up of the qualita-
tively linked variables which indeed must be known
before one can proceed to a qualitative aggrega-
tion.

The method we propose is an iterative one
which makes use of the qualitative aggregation
principle. First a pair of qualitatively linked varia-
bles is sought and, if found, the system is aggre-
gated according to it. The next step consists in
looking for a pair of qualitatively linked variables
for the aggregated system and so on, until a sys-
tem without qualitatively linked variables is ob-
tained.

In order to set up at each step a couple of
linked variables, one can make use of the follow-
ing very simple, but only sufficient, condition.

Sufficient condition 1 (S.C.1). If hy, and hy ; are the
only two non-zero elements of a row k', of H, then
the variables v, and v, of Hv=0 are qualitatively
linked.

The proof of this result is straightforward since,
if h,, and k, are the only non-zero elements of
A, we have

Ho0=0 = o, =24 (1.28)
0= v, = oy v,. .

It follows also from (1.28) that the qualitative link

between v, and v, is given by ¢’ = (k,, )

ise.,

hki:hkj__’éo’ b =0, ¥ j ==>OrL—Uj’
hk,.:—h,w.?éo, My =0, s%%i,j =ul,v.
(1.29)

The following example shows that condition S.C. 1
is not necessary:
oy

Ho=[1 T i]zz :[0}. (1.30)

This qualitative system admits only two normal-
ized solutions (v, = +):

s(1)=(+ - +) and sQR)=(+ - -)

from which obviously v, and v, are negatively
linked, even if each row of H has more than two
non-zero entries. In fact, the system (1.30) is
equivalent, with respect to the solutions without

zero, to the single qualitative relation
L2

(+ + 0)| vz |=0.
Uy

When condition S.C.1 is not fulfilled, one can
think of checking if H can be transformed into an
equivalent qualitative matrix satisfying S.C.1. This
can be done for instance by means of the follow-
ing sufficient condition (see [16, Chapter 4, Section
4.1).

Sufficient condition 2 (S.C.2). If two rows hi. and
W' of H can be written in the Jollowing form by joint
permutations of their elements:

.= (k. by hY)
h.=(r  h, ©)

J

with
h}_ =h! and hyy=00r —h,, or
hy=—h. and h,=0orh, (1.31)

then h,, can be replaced by a zero without affecting
the set S of solutions without zero of Hv = 0.

The following special cases can be set up.

(i) If &, =0 in (1.31), all elements of A2 can be
replaced by zeros. Since the transformed row will
thus provide the same qualitative information as
7., it can simply be deleted from H,

© (ii) If A7 =0, we have a situation analogous to
that of (1.30), i.e., the two rows differ in only one
non-zero element or in all but one. In this case 4 ik
and %, can both be replaced by zero and the two
transformed rows will provide the same qualitative
information. The couple of rows in (1.31) will thus
be equivalent to the single row (4! | 07).

Condition S.C.2 is an operational one since it
can be checked simply by comparing two by two
the rows of H. Consider for example the following
matrix;

(=]

H= (1.32)

|+ + +
|

1

2

— |3

*+ 4
1 2

|
w O+ | o
OO+ |

5

From rows 1 and 2 we can set 4,, =0, and from
rows 3 and 4 h;5 = 0. Thus H is equivalent to the
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qualitative matrix

+ = H - 0
+ - - 0 0342
oL 4 g Os (1.33)
- 4+ 0 0 -4
in which the rows 2 and 3 can be replaced by
(+ — 0 0 0). (1.34)

Finally it can be shown that /4 and h 5 might also
be zero, and thus H is equivalent to the row (1.34).
Since (1.34) fulfills condition S.C.1, it comes that
v, and v, are positively linked in Hv=0. By
aggregating (1.34) according to this link no more
qualitative system will subsist. Thus, we conclude
that the variables v can be partitioned into inde-
pendent classes, i.e.: {v3,02}, {vs3}, {vy)s {vs).

Both conditions S.C.1 and S.C.2 are only suffi-
cient. Nevertheless, together with the qualitative
aggregation principle, they should allow us to set
up almost all qualitative links. Indeed qualitative
links which could not be detected by means of
S.C.1 and S.C.2 are singular cases. On the other
hand it would be excessively time consuming to
check for the absence of such singular cases. Thus,
in order to preserve efficiency, it is preferable to
neglect these singular cases and to limit oneself to
the algorithm reflected by Fig. 1.

Concerning this diagram it must be noticed that
we call equivalent quasi-minimal a matrix obtained
from H by annuling successively all elements which
might be zero according to S.C.2.

It must also be noticed that the qualitative link
g' for each class of qualitatively linked variables !
is built step by step. Without loss of generality
suppose that a qualitative link between two ag-
gregates v} and v has been set up at the & th step.
Assuming ¢’ and g/ are respectively the links
between the variables o' represented by v} and v’
represented by of, the link g" for the vector v/ =
(v 1 /) will be

SRR
R T D
la™i—d"] ot

As described in Fig. 1 the algorithm has been

computerized and successfully tested with up to
200 relations systems. *

* *
oL vf,

* *
vfL_vf.

(1.35)

5 The algorithm has been implemented in a new version of the
program ANAS [18].

1.3. Improvement of Samuelson-Lancaster’s
elimination principle

This section is devoted to the computation of
the qualitative solutions set S for an » relations
and p variables qualitative system:

Hv =0.
(r¥p)

(1.36)

We shall assume only that no variable v, is a
qualitative zero so that § contains at least one
solution s without zero.

To solve this problem, one may use Samuelson’s
elimination principle [22, pp. 23-29). This tech-
nique consists in eliminating from the set of all
sign combinations s of length p those for which
(1.15) does not hold. It leads thus to compare 27 a
priori possible sign vectors s with each row of H. 2
In order to improve this procedure Lancaster
(1966) suggested to represent sign vectors by bi-
nary numbers according to which the comparison
of sign vectors reduces simply to the comparison
of integer numbers.

Under this form the efficiency of the elimina-
tion principle remains limited, however, by the size
27 of the reference set, i.e. the set of all a priori
sign combinations which increases exponentially
with p, the number of variables. For example, one
would have to test more than 10° possibilities for
p = 20 and more than 10" for p = 50.

With respect to this limitation a gain in ef-
ficiency will be achieved if before computing S we
can reduce the number p of variables by a qualita-
tive aggregation. Indeed from (1.25) this can be
done without loss of generality. Nevertheless, the
method will fail when the number of qualitatively
linked variables classes remains too large.

By means of a decomposition of the qualitative
system (1.36) the elimination principle may be-
come operational even for large p. Assuming H
contains zeros we can, through suitable permuta-
tions, write (1.36) into the following form:

Hy 0 ||
Hy Hy 1

=0 (1.37)
H, H, v

6 Note that there are 27 a priori possibililies if only sign
veclors without zero are considered. Otherwise this number
would be 37.
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Reduce H to a
No quasi-minimal
equivalent
matrix H

Does H con-
tain a row with
only two non-zero elements

2
hki and hkj 7

Do

a row with only two
non-zero elements h

m .
es H contain No

h o
and K

= i 3 h
g [hki hkj] is the

qualitative link between
v, and v,
1 ]

According to q
aggregate Hv = 0
= H:v* = (

Fig. 1. The iterative qualitative aggregation procedure.

where / is assumed to be as large as possible, which
implies for instance that the last column of each
r; X p; submatrix H,, contains only non-zero ele-
ments 0bv1ous]y the possible sign combinations
s' for o' must belong to the qualitative solutions
set S of

Himle=1. (1.38)

Likewise the possible sign combinations (5" | s )
for (v" { ©*') must be qualitative solutions of

(Hy, | sz)[;’;} =0 (1.39)

There are no
more qualitative
links

Since o' in (1.39) must also be compatible with
(1.38), one needs only to seek the solutions of
(1.39) for which s! is a qualitative solution of
(1.38). Thus there are only 127 3 priori possibili-
ties to be considered when (1.38) admits ¢ solu-
tions. Seeking recursively, along the same way the
solutions of

(H,,--- Hy,) = | =20, (1.40)
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among the sign combinations (sV- 5570 5%
where (s - --s*¥7") is one of the solutions set up
at the previous step, one will finally at the /th step,
obtain the set S of qualitative solutions for the
whole system (1.37).

To illustrate this recursive procedure let us
consider the following example:

Uy
(et 0,0 |]4 ] =0, (1.41)
) _Q_ _‘t 1 ;#4}_{{ %
—0 == o' +!' — 0—5

According to (1.13) we assume v, = +. The set of
a priori possibilities for the first three variables
(0, 3, Dy) can thus be diagrammed as follows:

variables

Only the branch

variables

thus the two following branches:

variables

i
b
V3
V4

form the reference set for the second step. Pursu-
ing along this way we can represent the construc-
tion of the qualitative solutions of (1.41) by the

following branch and bound diagram:

pariabies

solutions

where °—~f_,denotes a branch eliminated by the
kth relation. Thus (1.41) admits two solutions:

(+ + — 4+ +) and (+ + — + =)

These are obtained by testing 8 a priori possibili-
ties whereas the basic eliminiation principle would
require the testing of 24 =16 a priori combina-
tions.

It must be noted here that the efficiency of the
procedure is not independent of the variables
ordering [16, pp. 76-78]. Maximal efficiency will
be achieved if, when setting the system into the
form (1.37), one seeks to minimize successively the
number p;, of columns of the matrix H;,, i=
Li2ys0 4

To give an idea of the gain in efficiency of the
proposed recursive procedure as opposed to the
basic Samuelson—Lancaster elimination principles,
we can mention that for a 20 relations model the
computation of the solutions for 5 exogenous vari-
ables was reduced from 30 minutes to 10 seconds
on a UNIVAC 1108.

1.4. Tllustration and additional information

The purpose of this section is to provide an
example of a comparative static study carried out
by means of the techniques proposed in this first
part.

A quite small macromodel is considered in order
to allow the reader to check, by hand, the results
presented. The relations, in their general formula-
tion: y = g( y,z), are given hereafter, together with
the sign assumptions made about the derivatives
of the behavorial relations:

C=g (W.Y).
(+)(+)

(1) Private consumption:
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(2) Private investment: I=g,(P).
(3) Wages: W= gﬁé) .
(4) Corporate savings: S=g, ((P+)).
(5) Business taxes: T=g, (( 3) :
(+)

Identities and definitional relations:

(6) Total production: O=C+I+4G.
(7) Profits; P=Q—-—W-T.
(8) Non wage incomes: Y=P-—38,

The only exogenous variable considered is G,
the public consumption.

The qualitative structure of the model, i.e. the
sign content of the matrix (3g/9z" | dg/0y’ —1I),
is

G ¢ w Y ©Q P S I T
1 - + 4+
3 - . + ER ; .
8. . B =y ;
6|+ + o= ..+ (142)
Tl . = . =
4 + =
] N
5 e ; .=

Since the model is completely simultaneous there
are no qualitative zeros.

From this basic qualitative information we set
up the following classes of qualitatively linked
variables:

{0. W, T}

(P, 8,0}

{¥} all links are positive.
(c)

{G}

The resulting aggregated system characterized by
the matrix

G P

0 Y c
t[ +) 9= }
gL [~ (+) (+)

admits the 11 qualitative solutions

¢ Q@ VY ¢ P
L+ + o+ o+
2 + + + + -
3+ + — 4 4
4+ + + -
5+ + — — 4
6 + + — — -~
7+ — 4+ 4+ -
8 + — + — 4
®9 + — + - -
0w+ - — — +
R e

These outcomes seem not very relevant. With
respect to the generality of the assumptions made
this is, however, not surprising. Thus, to obtain
more significant results one has to consider further
information.

The determinant of the matrix 4 corresponding
to the Jacobian 3h/dy’ (=9g/8y’~1TI) of the
model is qualitatively undetermined,’ Assuming
the model represents the equilibrium relations of
some underlying dynamic process, stability condi-
tions would imply a given sign for the determinant
|8h/3y’|. Our first additional constraint is thus

Ci: |A|=sign[(—1)"] = +.

From Cramer’s rule: x, |4|=|4,|, where A, is the
matrix obtained by substituting —b(= — 3 /da)
to the ith column of 4, an impact multiplier X;
(= 0y, /da) will be qualitatively determined under
C, when the sign of the determinant |4;| is unam-
biguously determined from the basic qualitative
assumptions. ® This is for instance the case of the
impact on Q, for which it is easy to check that the
corresponding determinant |4, | is positive. Thus,
remembering the qualitative links, imposing C,
leads us to set

Q9 - oW

aT
EYel 0, 56—3‘0 and ET(;>Q

As shown by Lancaster [13, p- 288], by means
of linear combinations, quantitative a priori infor-
mation permits sometimes to define a new qualita-
tive relation which can be added to the system
analyzed. This technique enables us to take into
account the 2 hypothesis

G 0<dg,/oP<1,

d 0
Gy gty 85

<

3@ a0
By considering, in addition, the exact value (— 1)
of the diagonal elements of the Jacobian, as well as
that of the coefficients of the definitional relations
(7) and (8), we obtain the two new qualitative

L.

7 The determinant |4] is undetermined if and only if the
system Ax =0 admits at least one non-zero solution [13]). This
can be checked by means of an algorithm based upon the
iterative qualitalive aggregation principle [16, Chapter 4, Sec-
tion 4.4].

As for the qualitative determination of |4], this can be
checked by means of an algorithm based upon the iterative
qualitative aggregation principle [16, Chapter 4, Section 44).
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relations:
{8 § (+)UP+(_)UY:0,
(10): (+)vp +(—)vp =0.

The relation (9) is obtained by substracting, in the
Jacobian (1.42), row 4 from row 8, whereas the
relation (10) is obtained by substracting rows 3
and 5 from row 7.

In order to study the implications of the con-
straints C, and C;, one has simply to complete the
system Ho =0 with the two relations (9) and (10).
This completed system can then be analyzed by
means of the techniques described hereabove.
Along the same line the implications of the con-
straint C, could be studied by adding to the
system the relation:

(11): (+)vg +(—)vp =0,

which ensures a positive link between v, and v,.
In our simple example this is indeed useless,

since the supplementary relations (9) and (10)

obviously imply:

vpL,vy and vyL,vp.

By transitivity of the relation L, it follows that all
variations are positively linked. Thus, under the
constraints C,, C, and Cj, it follows from the
qualitative structure of the model, that all multi-
pliers dy, /0G are positive.

2. The geometric approach
2.1. Intervals of knowledge and polytopes

If you have good enough data about an econ-
omy, computer facilities and a graduate student in
econometrics who will agree to work for you, you
can ask him, for instance, “What is the marginal
propensity to consume (or to invest) with respect
to a given variable for a given period of time?”. If
the student is conscientious, he will try to estimate
different specifications and functional forms of the
consumption (or investment) function, will select
the best one according to criteria such as the R?,
the D.-W. statistic and some other validation con-
ditions, and will give his conclusion as an estimate,
a numerical value matched with a standard error
coefficient. By repeating this experience several
times with various students in different universi-
ties, and with more or less observations about the

phenomenon, you will certainly obtain a wide
range of results and conclusions about the margi-
nal propensity to consume. And if you have no a
priori reason to prefer one particular conclusion,
your information about the marginal propensity to
consume will be summarized by an appropriate
interval which, for convenience, is assumed to be
closed:

a’ <a<a*.

Exact quantitative knowledge corresponds then to
the case a® = a*, while a® # a* corresponds to
more qualitative or imprecise situations.

More generally the specification of an econo-
metric model of m relations between m endoge-
nous variables y and k exogenous or prede-
termined variables z:

h(y;2)=0< h(y;z)=0, i=12,....m,

normally gives rise to several sources of impreci-
sion. One is due to the choice of the variables and
the nature of the relations retained to define en-
dogenous variables (i.e. accounting or definitional
identities and behavioural relations). Others come
from the necessary choice of a given parametric
function for each behavioural relation, from iden-
tification and estimation problems linked with such
relations, as well as with the latent distortion
inherent to aggregated economic variables not di-
rectly observed.

There are essentially two ways enabling you to
take into account imprecision. The first is the
traditional probabilistic approach using confi-
dence ellipsoids or intervals, which are based on
the specification of a random vector of errors
normally distributed, as well as on asymptotic
considerations permitting to overcome difficulties
due to non linearities. Although conceptually
rigorous, this approach is not always very satisfac-
tory when applied to non experimental situations,
such as economic phenomena. In particular,
asymptotic considerations are often relevant to
fictitious situations with no practical feasibility.

To describe the second way, let us first consider
(2.1) in its linearized form:

AAy+BAz=c (2.2)

where A is the Jacobian matrix dk/dy", B=
dh/9z', c an m vector of residual terms, Ay =y —
yo» and Az =z — z,, and (y;; z,) being given, for
instance, by the last disposable observation. Set-
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ting
-Ay A B —¢
x=|Az|, D={0 I —y
lv 0 0 1
and
K
b=10
|1

(2.2) can be written in the following canonical
form:

Dx=b, (2.3)

where v=1 is an auxiliary variable and Az=1y.
Without loss of generality the n X n matrix D (with
n=m-+k+ 1) is assumed to have all its diagonal
elements equal to one.

Coming from various sources such as econo-
metric estimations or a priori informations, we
suppose that our knowledge about the model takes
the form of a set of intervals d;, <d,; <d for all
the coefficients of the D matrix:

D={D|D°<D=D*}. (2.4)

%D is obviously a parallelotope in the parameters
space, compact (closed and bounded) and convex.

This way of specifying economic knowledge by
intervals is a general and very soft one, particu-
larly to express differences in imprecision of
knowledge about the past, and knowledge about
the future.

- Now, the problem to be faced is the study of
significant properties of the geometric figure gen-
erated in the n-dimensional Euclidian space (R”
for convenience) by the set

P={xER"|Dx=b,D D). (2.5)

P will be called a polytope in R" [20, Chapter IX],
and several questions about P come immediately
to mind, e.g. its projections with respect to the
x-axes or on a selected plane corresponding to a
couple (x;,x;) of variables, and the particular
points of % which give rise to some particular
points of P,

Before going on with the study of these proper-
ties, let us illustrate this approach for n=2:

d;: X, =a;x, + by,
d,: X, =a,x; + b,

where b, and b, are assumed to take fixed values
and a) <a, <a}, a <a, <a?*. The Figs. 2-5 give

e do
; |
LY
b
1

some particular cases which may occur.

Figs.2 and 3 illustrate the case of regular poly-
topes, compact and connected. In Fig.2, P is com-
pact and convex. In Fig, 3, P is non convex but it
is still compact and connected.

Figs.4 and 5 are relevant to singular polytopes.
P is no more compact and not necessarily connected,
Its projection with respect to the axes x,, x,, can
be identical with the selected axes, and the only
properties we can hope to bring out are qualitative
properties such as: x, is always of the same (or
opposite) sign as x,.

Clearly the case of singular polytopes occurs
when in the parameters space the closed set

K={De®||D|=0) (2.6)

is not empty, where |D| is the determinant of
matrix D, Fig. 6 illustrates this situation for n =2,
K=K, UK, is defined by the intersection of the
set (€ and the hyperbola

Fig. 2.

|D|=0 = a,a, =1.
2.2. Some properties of polytopes

Let us first consider the problem of eliminating
the singular cases which may occur. For this pur-

Fig.3. P=P,UP,.
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Fig.4. P=P,UP,.

Fig. 5. P=P,UP,UP,.

Fig. 6.

281
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pose we will suppose from hereon that there are
exactly p<n? elements d,; of matrix D such that
dj<d;=<d¥, withd? < .
ie. D contains n? —p elements taking a fixed
value. Then the parallelotope will admit exactly 27
extreme points DY), /=1, 2,...,27, obtained by
setting either d,, = d) or d,; = d* for each of the p
elements which can vary, called hereafter variable
elements.

We will say that a point D ER"" is regular iff
|D|# 0 and singular iff |[D|=0.

Starting from the mean point

D=1(D° +D*) (2.7)

assumed to be regular, we consider the 27 matrices
B defined by

DY =5 ", (2.8)

Hence, the existence of one singular point in the
direction defined by B! supposes that equation

JE—EB(”]=O

has a real positive root e such that e < 1. Since, for
D regular, the equations D —eB|=0 and |7 —
€D 7'B®|=0 have the same roots, if o'’ is the
greatest real eigenvalue of D~'BY) it comes im-
mediately that

K= @ iff max p’ <1 (2.9)
!

where K, given by relation (2.6) above, is such that
K=& iff P is a regular polytope.

When P is singular, it is then possible to define
reduction coefficients ) > 1 /o) for each matrix
B such that p” = 1, which ensure the I — (g
matrices to be regular points fulfilling condition
(2.9).

It remains the problem of locating matrices D'
for which such computations and modifications
are necessary in order to have a regular polytope.
For this purpose, let us recall that a determinant
|D] is a continuous function of its elements and
that it cannot change sign without vanishing at a
given point. Hence, the list of all the matrices we
are looking for are given by the extreme points
D such that | D| and | D" | are of opposite signs.
This list can easily be obtained from a simple test
along the lines of the enumeration procedure for
exploring parallelotope ) by modifying one varia-
ble element at a time which is described in Section
2.4 hereafter.

Assumption. From hereon we shall assume that al,
the polytopes considered are regular.

When ) is a compact set where the determinant
|D| does not vanish, all elements d*/ of matrix
D~ are continuous functions of D €%, and so
are the components x; of x =D ~'b. Hence, from
topological properties of compact sets (see for
instance [3, Chapters IV, V]), the set

P={x|x=D""'b,DED)

is compact and, from the Weierstrass theorem,
each component x; reaches at least a maximum
value and a minimum value on this set.

Now, taking into account the convexity of@
(and the continuity of x on ), it comes im-
mediately that P is connected.

It comes also that the x, component takes its
extreme values (maximum or minimum) on the
boundary of P given by the set of its boundary
points b(P).

In order to characterize this set of points b(P),
let us now give some definitions.

— The characteristic points of P are defined by:

D =(D")7'b, I=12,...,27,

where the D" matrices are the extreme points of
%D. As it will appear hereafter, all extreme points of
P are characteristic points, the converse being not
true.

— An edge of P will be defined by two characteris-
tic points (x'“, x®)) such that

AE€[0,1] and Ax" 4 (1—A)x™® €p,(P)
(2.10)

where b, (P) is the boundary of some face (or
subpolytope) of P of dimension two. Thus, an
edge can be seen as a face of dimension one, an
extrem point as a face of dimension zero. The line
given by

x(A)=xD 4 A(x® —xD), AeR (2.11)

will be called the supporting line of the edge
(x(l)’x(k)).

For regular cases in R” space, we know that the
intersection of (n — 1) hyperplanes defines a line.
Hence, by writing systems D)x = b and D*)x = p,
having the same last » — 1 rows, in the partitioned
form

A 3“?]:[1%} (2.12)
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where ¢, a, X, b are (n— 1)-vectors, and H an
(n— 1)X (n— 1) matrix assumed to be regular, it
comes:

s=H '6—H 'ex,. (2.13)
This relation, along with

x,=A, AER

defines the line passing through x” and x**). Let
us now suppose that a is a vector of variable
elements belonging to the parallelotope

a={a|a’ <a<a*},

such that matrices D’ and D'®’ for instance are
obtained at two extreme points of a. From (2.12)
and (2.13) it comes:

|D|=|H|(1—a'H )

and (2.14)
—a'H™ b

S e ————
1—a’'H 'c

Since

peD o |H|(1—a'H ') #0,

(1—a’'H '¢)==0 and x, is obviously a continous
function of a € a, which can be seen as a branch
of a hyperboloid. In particular, x, is monotonic,
increasing or decreasing with respect to each varia-
ble element a, € [a?, a¥]. Hence, x, will take its
maximum and minimum values at extreme points
of the paralellelotope a. Moreover, to each edge of
a corresponds an edge of P and all these edges
have the same supporting line. Generalisation
comes immediately.

When DY and D™ have only n—r common
rows (r> 1), the intersection of the corresponding
common hyperplanes generates a hyperplane b, 08
of dimension . Since P is compact and connected,
the set 9, N P is also compact and connected,
necessarily bounded by a set of edges, each edge
being bounded by two characteristic points of P.

Without other proof, we can then summarize
the following properties for regular polytopes:

Property 1 (P.1). (x, x¥)) is an edge of P iff
matrices D and D' have exactly (n—1) com-
mon rows;

Property 2 (P.2). A component X, of x takes its
maximum and minimum values at extreme points of
%) generating the characteristic points of P.

Property 3 (P.3). In the R" space, the boundary of P
is a polyhedron given by its characteristic points b8
[=12.....27 and its edges (x/), x'¥).

Furthermore, the dimension of P in R" space is
obviously given by the number k<n of relations
containing variable elements.

2.3. Projections of polytopes

Let us first consider projections of P with re-
spect to the axes associated to x, axis X, for
instance. We know, from the compactness and
connectivity of P, that these projections are given
by intervals of the form [x?, x}] such that
x®=minx, and x§ =maxx,.

ped Dew
Optimal solutions to these problems, i.e. extreme
points of &) and the corresponding characteristic
points of the polytope P can be obtained either by
an enumeration procedure (see Section 2.4), or by
an iterative procedure based on the sign of the
partial derivatives:

0x;

dd

. (2.15)
which are continuous functions of the variable
elements of D €. Table | summarizes necessary
conditions for x, to have minimum or maximum
values on extreme points of %), which are also
sufficient when P is convex.

In particular, when the partial derivatives (2.15)
are sign constants on ) (the case of and input-
output open Leontief model, for instance) optimal
solutions are immediately given. For more general
cases, however, determination of the interval [x3,
x*] may require heuristic considerations using both
the partial enumeration procedure and the neces-
sary conditions above mentionned.

In order to study projecting of polytopes on
planes, let R be the projection of P on the plane
R?2 corresponding, for instance, to the first two
components (x,.x,) of x. R is obviously a com-
pact and connected set, and its boundary gives rise

Table |

Sign of Search Search
dx,/0dy; of x? of xF
Positive dy =d, =,
Negative dy =di, dy = 4
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to a polygon defined by the projection Py of a
subset of the characteristic points x), /= 1,2,...,27
and by the projection of the edges linking these
points. Since from P.1 above, we are able to test
the existence of an edge linking two given char-
acteristic points, the problem to be solved is the
construction of the set R without projecting all the
characteristic points of P but only an appropriate
subset Cp D Py thereof.

Let x@ = (D®)~1h be a characteristic point of
P. From x we can define p edges (x©®, x() such
that x =(D®~'p  matrices DO, j= 1200000
being the p extreme of & adjacent to D@, ie.
matrices obtained from D by modifying only
one variable element. Setting

S ey |
X= and ¥V = |
X3 xé’)

i=0,,.... p,

projection of the points x{” in the selected plane
generates (for p = 3) a convex polygon §:

P P
Sﬁ{)ﬂf: 2 AxD A, =0and 2?\,21}.
=1

=1 i=

Hence, if S and R are the interiors of S and R,
respectively, it comes:
Ve =30k (2°egPr,),
where @ € § iff
P

A, >0, i=12,...,p and I A, =1

=1
such that

P .

O = A xO, (2.16)

i=1

If ¥ &S, ¥ will be called a critical point of R.

={(2) i
X

Clearly the set Cg of all the critical points of R
is such that P, C Cy, and its determination will
probably enable us to eliminate a great number of
characteristic points as interior points of R. In
particular, if P is a convex polytope, then P =Cg,
the case P, CC, occuring when projection R
masks a non convex part of P. For instance, we
can have the following situations for p=3 (see
Fig. 7).

In case (a) x® € R and it will not be retained as a
critical point of R. In case (b) x® & S and then it
will be retained as an element of C,.

Taking into account the fact that if two regular
matrices 4 = D and B= D differ only by the
value of one element b,, =a,, +Aa,,, their in-
verses are such that

ik kj
a’a™ Aa,,

bij :aij _ ,
]+a‘U’Aahk
where
B|
5 _ |
1+a hAahk —ﬁ,
it comes:
Jh,(0)
(1) — {OIRM =12
X X kh v ST e
1+a* Aa,,

It is then possible to define a 2 X p matrix

I'= (in) = (x}” - x,EO)):=I,2..A.,p,J=1,2

such that conditions (2.16) above are equivalent to
the existence of a strictly positive solution A > 0 to
the homogeneous linear system

TA=0.
From results on linear equations and inequalities

(see for instance [14, p. 256]), we know that either
IA=0 has a strictly positive solution A >0, or

;(2)

case (a) case (b)

Fig. 7.
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yp1I'=0 has a solution. Hence, we must examine if
there exist two numbers y,, )y, verifying the p
inequalities

yivi a2 =0, =12, p. (2.17)

Taking the following partition of the index set
=02, ..., g}

10:{”71.':0}’
L=11| Yu <0},
(2.17) can be rewritten:

IL={ily,>0 } and

»rY =0, Vi€ Iy,
Y2

s, viel,
Y

» < —hst ViEIZ.
Y

Three types of solutions can then be distinguished
according to the value taken by y,, which are
summarized in Table 2.

If one of the conditions (a), (b) or (c) is verified,
then TA =0 has no strictly positive solution, Le.
7 is a critical point of R.

2.4. Algorithmic remarks
As it has been pointed out in Section 2.3 above,

if two regular matrices A and B differ only by the
value of one element b,, = a,, + Aa,,, their in-

verses B~ = (b”) and 4 ' = (a'/) are such that
Wi ihghl A
bl = it — =k (2.18)
1 +a** Aay,

with the following relation between determinants:
|B|=]4| (1+a*" Aay,). (2.19)

For such matrices 4, B (A €%, BED), the
edge (A4, B) of the parallelotope ) will contain no
singular points if |4| and |B| have the same sign
as | D|, where D=%(D" + D*) is the mean point
taken here as a regular reference point of ©D.

Table 2
Type of Existence conditions
solution
(=0 HuL#@andl|=@orl,=9
Y2 ; Yai .

(byy, =1 max{——=)=min{——} and y,, =0, Vi&/

F2 *€f1{ 'fn] i_EJZ{ ]’1.} Yar 0

i, Y2 Yai :
(©ym=—1 max{—=)}<max({—)andy, <0, Vi€l
el Yii €1, Yu

Hence, starting from an extreme point A € oD such
that sign(|4|) = sign(| D|), it comes from relation
(2.19) that edge (A, B) does not have any singular
points iff a*" Aa,, > —1.

Moreover, relation (2.18) can be used to calcu-
late recursively the inverse D! for all extreme
point D €D, and thus the computation of only
one initial inverse matrix is required: evaluation of
characteristic points x = D~ 'b follows im-
mediately.

Hence, it remains to describe an efficient enu-
meration procedure to obtain recursively all the
extreme points of & by modifying one variable
element at a time.

To this purpose, let d be a p-vector containing

the variable elements, such that
dY <d=d*.
Starting from d" =d° each term d'” of the
sequence d?, d™,...,d?P will be characterized
by two integers i; and k, locating, respectively, the
element d, which is modified when we go from
dU=V to 4V, and the extreme point of ¢ repre-
sented by d'. In particular, k, is such that its
binary expression is a p ordered sequence of digits
or bits 0,1 with

. 1 ifd}”=d;“,
biti=

0 ifdf”=d,°,
i=1.2,...,p.

The selected procedure used to list the 27 bi-
nary numbers is illustrated hereafter for p =3 in
Table 3.

For p =4 we take the sequence obtained for
p = 3, we rewrite the same sequence in the reversed
order, add a 0 in the last position of the first 2?
numbers and a 1 to the last 2° numbers, and so on.

For /=12,...,27 — 1 we can then verify that i,
is given by the following expressions:

log n,

log2°’

n, = AND(/,COMPL(/— 1))
where COMPL(/— 1)

=1+ with

gives the bit by bit logical complement of the
binary expression of /— 1 and AND(/,,/;) is the
integer obtained from the bit by bit logical prod-
uct of the binary expressions of /, and /,. AND( )
and COMPL( ) are standard functions in ASCII
Fortran of the UNIVAC 1108 computer.
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Table 3
P 1 2 3
0 00 000
1 10 100
11 110
01 010
011
111
101
001

2.5. Hlustration and practical considerations

As an illustration, let us consider the simple
macroeconomic model described in Section 1.4
above, which is written here in linearized form.,

(1) Private consumption: AC = ¢, AW + ¢, AY.
Intervals: 0.7<¢, <0.8, 0.5 <¢, <0.6.

(2) Private investment: AT=iAP.
Interval: 0.6 <i=0.7.

T 4p

Table 4
Hypotheses ¢, s i W 5 1 AG
0 07 05 06 06 04 008 -1

1 08 06 07 07 06 0.10 2

(3) Wages: AW =wAQ.
Interval: 0.6 =w=<0.7.

(4) Corporate savings: AS =sAP.
Interval: 0.4 <5< 0.6,

(5) Business taxes: AT=1AQ.
Interval: 0.08 < ¢ =<0.10.

(6) AQ=ACH+ AI+AG.
Interval: —1<AG<2.

(7) AP=AQ — AW — AT.

(8) AY=AP—AS.

Matrix D contains 7 variable elements giving
rise to 27 =128 extreme points of 9 (and char-
acteristic points of the polytope), each point being

. =2

Fig. 8: Projeclion R of the polytope in plane (AW, A P)

A: 1110000 F: 1110001
D: 1111000 G: 1111001
C: 1111010 H: 1111011
D: 1110010 E: 1110011
I: 1110100 J: 1110101

Aw
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Table 6
Edges Compromise between objectives
(G.F) — (max W, max P)
(E, F) - (max T, max Q)
(J.F) - (max S, max ¥)

represented by a binary number of 7 bits accord-
ing to the convention described in Table 4.

For instance, the number 1101011 corresponds
to ¢, =0.8, ¢, =0.6, i=0.6, w=0.7, 5= 04, t=
0.10 and AG=2.

Selecting the projection plane (AW, AP), the
resulting set R is given in Fig.8 , where we have
reported only the significant points of the
boundary and the interior points D and E associ-
ated with the projection of the polytope on the
axis AT.

As it can be seen in the Table5, point 4 gen-
erates minimum values for AQ, AC, AL, AP, and
AY. Maximum values for these variables are ob-
tained at point F by moving along the edge (A, F).
For AW, AS and AT, these crucial edges are,
respectively (B,G), (I,J), and (D,E). Moreover,
all these edges are generated by changing the value
of AG from —1 to 2, and are going through the
origin which is reached for AG = 0.

From these results, AG, can be seen as a vari-
able defining the amplitude of the polytope; sec-
ondly, all the significant points in Fig. 8 are such
that marginal propensities to consume c;, ¢, and
to invest i are fixed to their maximum value. With
respect to structural policy decisions, this corre-
sponds to a consensus between firms and house-
holds, regardless of their possibly having other
incompatible objectives.

This last remark suggests an interpretation of
the significant edges of Fig.8, as edges of com-
promise or negociation between conflicting objec-
tives. Setting, for instance, AG =2, some crucial
edges of compromise are listed in Table 6.

3. Conclusion

It is well admited, in economics, that knowledge
derived from an entirely quantified model can be
only approximative. Nevertheless, as opposed to
the emphasis given on statistical and numerical
methods devoted to precise quantitative informa-
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tion, less attention has been given, in economic
modeling, to the treatment of more robust infor-
mation like that defined by intervals.

We see two major reasons for this seemingly
paradoxical tendency in economic modeling. The
first is the lack of efficient 100ls for dealing with
interval knowledge. The second is that, due to
their generality, information by intervals does not
ensure precise and workable results. For instance, it
would not be significant to know that the variation
AC of private consumption expenditure resulting
from an increase AG of the public expenditures,
will be comprised between —AG and +2AG.

Let us note that qualitative and geometric mod-
els should not be considered as alternatives to
quantitative models. They provide indeed knowl-
edge of different nature and are therefore comple-
mentary. Thus for instance, the geometric ap-
proach focusses on extreme points whereas the
common statistical procedures are mainly con-
cerned with mean values or such representative
figures.

Now, with respect to the two drawbacks pointed
out, let us briefly expose our view of the scope and
the future of qualitative and geometric methods.

Concerning the qualitative approach, we expect
that the iterative qualitative aggregation proce-
dure, which has been tested with systems of up to
200 relations, should allow to analyse a 1000 rela-
tion system within 15 minutes CPU time. This can
be considered as a satisfactory performance from
the point of view of efficiency. The problem lies,
however, in the fact that significant results are
generally meager as long as only the basic qualita-
tive information is taken into account. As shown
on our simple example in Section 1.4, additional
information is usually necessary, in order to im-
prove the undetermined results. Such information
leads to the imposition of constraints on the
qualitative system analyzed. When they take the
form of qualitative relations these constraints can
be treated by means of the same efficient qualita-
tive techniques. The problem which remains is that
of determining in each case, constraints which,
while being not too restrictive, could improve sig-
nificantly the qualitative results. Thus the develop-
ment of the qualitative approach should focus on
the possibility of seeking automatically, or at least
quasi-automatically, efficient supplementary con-
straints. The overcoming of this difficulty would
then allow a more systematical use of qualitative
methods.

In order to give an idea of the actual scope of
the qualitative approach, we can mention that a
qualitative analysis of a 20 relation econometric
model has been carried out without major difficul-
ties in [17]. The same techniques have also per-
mitted a more complex qualitative study of a
model of about 170 relations in [16].

For the geometric approach the problem is quite
different. Indeed the definition of the intervals is
here flexible, so that an appropriate choice should
always make it possible to obtain workable conclu-
sions. The limitation of the approach is thus mainly
that of the efficiency of the tools. It is obvious that
the geometric illustration given in Section 2.5 is
too simple to have other purposes than pedagogic
ones. Up to now, we have some experiences with
more sophisticated models of about 20 relations
and 15 variable elements. But the practical feasi-
bility of this approach is certainly compatible with
large scale models for projections with respect to
the axes. If we also require projections on selected
planes, we are actually restricted by the number of
variable elements generating the 2# characteristic
points of the polytope, since the projection proce-
dure is based on an enumeration procedure, which
needs about one minute CPU on UNIVAC 1108
computer for 2000 characteristic points. Other
procedures are under study in order to construct
directly projections of polytopes on selected planes
without exploring all the characteristic points, and
we hope to deal with models of more than 100
relations and 50 variable elements in less than five
minutes CPU, including the automatic design of a
projection by the computer.
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