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Abstract: This paper is concerned with the summarization of a set of categorical sequence data. More specif-
ically, the problem studied is the determination of the smallest possible number of representative
sequences that ensure a given coverage of the whole set, i.e. that have together a given percentage
of sequences in their neighborhood. The goal is to yield a representative set that exhibits the
key features of the whole sequence data set and permits easy sounded interpretation. We propose
an heuristic for determining the representative set that first builds a list of candidates using a
representativeness score and then eliminates redundancy. We propose also a visualization tool for
rendering the results and quality measures for evaluating them. The proposed tools have been
implemented in TraMineR our R package for mining and visualizing sequence data and we demon-
strate their efficiency on a real world example from social sciences. The methods are nonetheless
by no way limited to social science data and should prove useful in many other domains.

1 INTRODUCTION

Sequences of categorical data appear in many dif-
ferent scientific fields. In the social sciences, such
sequences are mainly ordered list of states (em-
ployed/unemployed) or events (leaving parental
home, marriage, having a child) describing indi-
vidual life trajectories, typically longitudinal bi-
ographical data such as employment histories or
family life courses.

One widely used approach for extracting
knowledge from such sets consists in computing
pairwise distances by means of sequence align-
ment algorithms, and next clustering the se-
quences by using these distances. This method
has been applied to various data since the pio-
neering work of (Abbott and Forrest, 1986). A
review can be found in (Abbott and Tsay, 2000).
The expected outcome of such a strategy is a ty-
pology, with each cluster grouping cases with sim-
ilar patterns (trajectories).

An important aspect of sequence analysis is

also to compare the patterns of cases grouped ac-
cording to the values of covariates (for instance
sex or socioeconomic position in the social sci-
ences).

A crucial task is then to summarize groups of
sequences by describing the patterns that char-
acterize them. This could be done by resorting
to graphical representations such as sequence in-
dex plots, state distribution plots or sequence fre-
quency plots (Müller et al., 2008). However, re-
lying on these graphical tools suffers from some
drawbacks. Sequence index plots give a (sorted)
view of all the sequences in each subset and as-
signing them a meaning is mainly a subjective
task. State distribution plots are aggregated
transversal views that occult individual sequences
and their interpretation can be misleading. Se-
quence frequency plots that focus on the most
frequent sequences provide only a partial view es-
pecially when there is a great number of distinct
sequences.

Hence, we need more appropriate tools for ex-
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tracting the key features of a given subset or data
partition. We propose an approach derived from
the concept of representative set used in the bio-
logical sciences (Hobohm et al., 1992; Holm and
Sander, 1998). The aim in this field is mainly to
get a reduced reference base of protein or DNA se-
quences for optimizing the retrieval of a recorded
sequence that resembles to a provided one. In this
setting, the representative set must have “maxi-
mum coverage with minimum redundancy” i.e. it
must cover all the spectrum of distinct sequences
present in the data, including “outliers”.

Our goal is similar regarding the elimination
of redundancy. It differs, however, in that we
consider in this paper representative sets with a
user controlled coverage level, i.e. we do not re-
quire maximal coverage. We thus define a rep-
resentative set as a set of non redundant “typi-
cal” sequences that largely, though not necessar-
ily exhaustively covers the spectrum of observed
sequences. In other words, we are interested in
finding a few sequences that together summarize
the main traits of a whole set.

We could imagine synthetic — not observed —
typical sequences, in the same way as the mean
of a series of numbers that is generally not an ob-
servable individual value. However, the sequences
we deal with in the social sciences (as well as in
other fields) are complex patterns and modeling
them is difficult since the successive states in a
sequence are most often not independent of each
other. Defining some virtual non observable se-
quence is therefore hardly workable, and we shall
here consider only representative sets constituted
of existing sequences taken from the data set it-
self.

Since this summarizing step represents an im-
portant data reduction, we also need indicators
for assessing the quality of the selected represen-
tative sequences. An important aspect is also to
visualize these in an efficient way.

Such tools and their application to social sci-
ence data are presented in this paper. These tools
are new features of our TraMineR library for min-
ing and visualizing sequences in R (Gabadinho
et al., 2009).

2 DATA

To illustrate our purpose we consider a data set
from (McVicar and Anyadike-Danes, 2002) stem-
ming from a survey on transition from school to
work in Northern Ireland. The data contains 70

Table 1: List of states in the mvad data set.

1 EM Employment
2 FE Further education
3 HE Higher education
4 JL Joblessness
5 SC School
6 TR Training

monthly activity state variables from July 1993
to June 1999 for 712 individuals. The alphabet is
made of 6 states detailed in Table 1.

The three first sequences of this data set repre-
sented as distinct states and their associated du-
rations (the so called State Permanence Format)
look as follows

Sequence
[1] EM/4-TR/2-EM/64
[2] FE/36-HE/34
[3] TR/24-FE/34-EM/10-JL/2

We consider in this paper the outcome of a
cluster analysis of the sequences based on Opti-
mal Matching (OM). The OM distance between
two sequences x and y, also known as edit or Lev-
enshtein distance, is the minimal cost in terms
of indels — insertions and deletions — and sub-
stitutions necessary to transform x into y. We
computed the distances using a substitution cost
matrix based on transition rates observed in the
data set and an indel cost of 1. The clustering is
done with an agglomerative hierarchical method
using the Ward criterion. A four cluster solu-
tion is chosen. Table 2 indicates some descriptive
statistics for each of the clusters.

The sequence frequency plots in Fig. 1 display
the 10 most frequent sequences in each cluster and
give a first idea of their content. The bar widths
are proportional to the sequence frequencies. The
10 most frequent sequences represent about 40%
of all the sequences in cluster 1 and 2, while this
proportion is 27% and 21% for clusters 3 and 4
due to a higher diversity of the patterns.

Table 2: Number of cases, distinct sequences and dis-
crepancy within each cluster.

N Dist. seq. Discr.
Cluster 1 265 165 18.3
Cluster 2 153 88 23.5
Cluster 3 194 148 27.9
Cluster 4 100 89 37.2
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Figure 1: 10 most frequent sequences within each cluster.

3 METHODS

Our aim is to find a small subset of non re-
dundant sequences that ensures a given coverage
level, this level being for instance defined as the
percentage of cases that are within a given neigh-
borhood of at least one of the representative se-
quences. We propose an heuristic for determining
such a representative subset.

It works in two main steps. In the first stage
it prepares a sorted list of candidate representa-
tive sequences without caring for redundancy and
eliminates redundancy within this list in a second
stage. It basically requires the user to specify a
representativeness criterion for the first stage and
a similarity measure for evaluating redundancy in
the second one.

3.1 Sorting Candidates

The initial candidate list is made of all distinct se-
quences appearing in the data. Since the second
stage will extract non redundant representative

sequences sequentially starting with the first ele-
ment in the list, sorting the candidates according
to a chosen representativeness criterion ensures
that the “best” sequences given the criterion will
be included. We present here five alternatives for
measuring the sequence representativeness.

Sequence Frequency. A first simple criterion is
to sort the sequences according to their frequency.
The more frequent a sequence the more represen-
tative it is supposed to be. Hence, sequences are
sorted in decreasing frequency order.

Neighborhood Density. A second criterion is
the number — the density — of sequences in the
neighborhood of each candidate sequence. This
requires indeed to set the neighborhood diame-
ter. We suggest to set it as a given proportion of
the maximal theoretical distance between two se-
quences. Sequences are sorted in decreasing den-
sity order.

Mean state frequency. A third criterion is the
mean value of the transversal frequencies of the
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successive states. Let s = s1s2 · · ·s` be a sequence
of length ` and ( fs1 , fs2 , . . . , fs`) the frequencies of
the states at time (t1, t2, . . . t`). The mean state
frequency is the sum of the state frequencies di-
vided by the sequence length

MSF(s) =
1
`

`

∑
i=1

fsi

The lower and upper boundaries of MSF are 0
and 1. MSF is equal to 1 when all the sequences
in the set are the same, i.e. when there is a sin-
gle distinct sequence. The most representative
sequence is the one with the highest score.

Centrality. A classical representative of a data
set used in cluster analysis is the medoid. It is
defined as the most central object, i.e. the one
with minimal sum of distances to all other ob-
jects in the set (Kaufman and Rousseeuw, 1990).
This suggests to use the sum of distances to all
other sequences, i.e. the centrality as a represen-
tativeness criterion. The smallest the sum, the
most representative the sequence. It may be men-
tioned that the most central observed sequence is
also the nearest from the ‘virtual’ true center of
the set (Studer et al., 2009).

Sequence likelihood. The sequence likelihood
P(s) is defined as the product of the probability
with which each of its observed successive state is
supposed to occur at its position. Let s = s1s2 · · ·s`

be a sequence of length `. Then

P(s) = P(s1,1) ·P(s2,2) · · ·P(s`, `)

with P(st , t) the probability to observe state st at
position t. The question is how to determinate
the state probabilities P(st , t). One commonly
used method for computing them is to postulate
a Markov model, which can be of various order.
Below, we just consider probabilities derived from
the first order Markov model, that is each P(st , t),
t > 1 is set to the transition rate p(st |st−1) esti-
mated across sequences from the observations at
positions t and t − 1. For t = 1, we set P(s1,1)
to the observed frequency of the state s1 at posi-
tion 1. The likelihood P(s) being generally very
small, we use − logP(s) as sorting criterion. The
latter quantity is minimal when P(s) is equal to
1, which leads to sort the sequences in ascending
order of their score.

3.2 Eliminating Redundancy

Once a sorted list of candidates has been defined,
the second stage consists in eliminating redun-
dancy since we do not want our representative

set to contain similar sequences. The procedure
is as follows:

� Select the first sequence in the candidate list
(the best one given the chosen criterion);

� Process each next sequence in the sorted list of
candidates. If this sequence is similar to none
of those already in the representative set, that
is distant from more than a predefined thresh-
old from all of them, add it to the representa-
tive set.

The threshold for sequence similarity is de-
fined as a proportion of the maximal theoretical
distance. For the OM distance this theoretical
maximum is for two sequences (s1,s2) of length
(`1, `2)

Dmax = min(`1, `2) ·min
(
2CI ,max(S)

)
+ |`1− `2| ·CI

where CI is the indel cost and maxS the maximal
substitution cost.

3.3 Size of the Representative Set

Limiting our representative set to the mere se-
quence(s) with the best representative score may
lead to leave a great number of sequences badly
represented. Alternatively, proceeding the com-
plete list of candidates to achieve a full coverage
of the data set is not a suitable solution since we
look for a small set of representative sequences.

To control the size of the representative set,
we limit the size of the candidate list so that the
cumulated frequency of the retained distinct can-
didates reaches a threshold proportion trep of the
whole data set. Setting for instance trep = 25%
ensures that at least 25% of the sequences will
have a representative in their neighborhood and
that the final representative set will contain at
most 25% of the distinct sequences of the whole
set. Thus trep defines also a minimum coverage
level.

There are indeed other possible ways of con-
trolling the size of the representative set such
as fixing a) the number or the proportion of se-
quences in the final representative set, or b) the
desired coverage level.

3.4 Measuring Quality

A first step to define quality measures for the rep-
resentative set is to assign each sequence to its
nearest representative according to the considered
pairwise distances. Let r1...rnr be the nr sequences
in the representative set and d(s,ri) the distance
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between the sequence s and the ith representa-
tive. Each sequence s is assigned to its closer rep-
resentative. When a sequence is equally distant
from two or more representatives, the one with
the highest representativeness score is selected.
Hence, letting n be the total number of sequences
and nai the number of sequences assigned to the
ith representative, we have n = ∑

nr
i=1 nai . Once

each sequence in the set is assigned to a repre-
sentative, we can derive the following quantities
from the pairwise distance matrix.

Mean distance. Let SDi = ∑
nai
j=1 d(s j,ri) be the

sum of distances between the ith representative
and its nai assigned sequences. A quality measure
is then

MDi =
SDi

nai
the mean distance to the ith representative.

Coverage. Another quality indicator is the num-
ber of sequences assigned to the ith representative
that are in its neighborhood, that is within a dis-
tance dnmax

nbi =
nai

∑
j=1

(
d(s j,ri) < dnmax

)
.

The threshold dnmax is defined as a proportion of
Dmax. The total coverage of the representative set
is the sum nb = ∑

nr
i nbi expressed as a proportion

of the number n of sequences, that is nb/n.

Distance gain. A third quality measure is ob-
tained by comparing the sum SDi of distances
to the ith representative to the sum DCi =
∑

nai
j=1 d(s j,c) of the distances of each of the nai

sequences to the center of the complete set. The
idea is to measure the gain of representing those
sequences by their representative rather than by
the center of the set. We define thus the quality
measure Qi of the representative sequence ri as

Qi =
DCi−SDi

DCi

which gives the relative gain in the sum of dis-
tances. Note that Qi may be negative in some
circumstances, meaning that the sum of the nai
distances to the representative ri is higher than
the sum of distances to the true center of the set.
A similar measure can be used to assess the over-
all quality of the representative set, namely

Q = ∑
nr
i DCi−∑

nr
i SDi

∑
nr
i DCi

=
nr

∑
i=1

DCi

∑ jDC j
Qi .

Discrepancy. A last quality measure is the sum
SCi = ∑

nai
j=1 d(s j,ci) of distances to the true center

ci of the nai sequences assigned to ri, or the mean
of those distances Vi = SCi/nai, which can be in-
terpreted as the discrepancy of the set (Studer
et al., 2009).

4 RESULTS

A graphical tool for visualizing the selected
representative sequences together with informa-
tion measures is included in the TraMineR pack-
age. A single function produces a “representative
sequence plot” (Figure 2) where the representa-
tive sequences are plotted as horizontal bars with
width proportional to the number of sequences
assigned to them. Sequences are plotted bottom-
up according to their representativeness score.
Above the plot, two parallel series of symbols as-
sociated to each representative are displayed hor-
izontally on a scale ranging from 0 to the max-
imal theoretical distance Dmax. The location of
the symbol associated to the representative ri in-
dicates on axis A the (pseudo) variance (Vi) within
the subset of sequences assigned to ri and on the
axis B the mean distance MDi to the representa-
tive.

4.1 Key Patterns

The set of representative sequences found with
the sequence frequency criterion is displayed in
Figure 2 for each of the four clusters of our exam-
ple. The plots give clearly a more readily inter-
pretable view of the content of the clusters than
the frequency plots displayed in Figure 1. De-
tailed statistics about these sets are presented in
Table 3.

The representative sequences were extracted
from a list of candidates sorted in decreasing or-
der of their frequency. The number of candi-
dates was limited by setting the trep threshold
for the cumulated frequency of the candidates to
25%. The pairwise distances used are the op-
timal matching distances that we used for the
clustering. The threshold dnmax for similarity
(redundancy) between sequences was set as 10%
of the maximal theoretical distance Dmax. The
sequence length being ` = 70, the indel cost 1
and the maximal substitution cost 1.9995, we get
Dmax = 70 ·min(2,1.9995) = 139.96.

The first cluster is represented by three se-
quences. The first one, employment during the
whole period represents 116 (44%) sequences
of the cluster (Table 3), and its neighborhood
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Figure 2: Representative sequences selected with the Frequency criterion, within each cluster (mvad data).

(within 10% of Dmax) includes 66 (25%) sequences.
The second representative sequence, a spell of
training followed by employment represents 101
(38%) additional cases and counts 34 (13%) se-
quences in its neighborhood. The third and
last representative sequence exhibits a short spell
of further education followed by employment.
Hence, this cluster is characterized by patterns
of rapid entry into employment. Overall, the dis-
tance to the representative is within 10% of Dmax
for 121 (46%) sequences of the cluster. The qual-
ity measure Q (see Section 3.4) is respectively
11.5%, 17% and 14.5% for the three sequences
in the set and reaches 15% for the whole set.

The second cluster is described by three pat-
terns leading to higher education, either starting
with a spell of further education or with school.
These three patterns cover together (have in their
neighborhood) 45% of the sequences and the over-

all quality measure for the representative set is
29%.

The number of selected representative se-
quences in cluster 3 and 4 is higher due to a lesser
redundancy in the candidate list. In cluster 3, the
pattern is a transition to employment preceded
by long (compared to Cluster 1) spells of school
and/or further education. In this cluster, the five
representative sequences cover together 48.5% of
the sequences, which is the highest attained value.

The key patterns in cluster 4 was less clear
when looking at the sequence frequency plot (Fig-
ure 1). This group is dominated by long spells
of training leading to employment or joblessness
and by disrupted patterns containing spells of job-
lessness. Hence these trajectories can be charac-
terized as less successful transitions from school
to work. The diversity of the patterns is high
in this cluster which leads to the extraction of
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Table 3: Representative sequences by cluster, fre-
quency criterion, trep=25%.

na (%) nb (%) MD V Q
Cl. 1
r1 116 43.8 66 24.9 12.5 9.9 14.5
r2 101 38.1 34 12.8 17.3 13.3 17.0
r3 48 18.1 21 7.9 19.2 14.5 11.5
r1−3 265 100.0 121 45.7 15.6 18.3 15.0
Cl. 2
r1 62 40.5 35 22.9 11.9 9.0 30.5
r2 63 41.2 24 15.7 20.4 13.9 30.6
r3 28 18.3 10 6.5 18.3 12.1 24.5
r1−3 153 100.0 69 45.1 16.6 23.5 29.4
Cl. 3
r1 54 27.8 41 21.1 10.3 8.3 41.3
r2 47 24.2 21 10.8 22.8 17.1 -11.6
r3 56 28.9 18 9.3 31.0 22.1 8.9
r4 22 11.3 10 5.2 31.7 20.1 22.9
r5 15 7.7 4 2.1 28.1 19.0 38.7
r1−5 194 100.0 94 48.5 23.1 27.9 17.0
Cl. 4
r1 28 28.0 15 15.0 15.0 10.9 50.4
r2 12 12.0 4 4.0 17.8 12.7 53.3
r3 7 7.0 4 4.0 20.6 14.4 63.9
r4 15 15.0 7 7.0 21.3 15.3 31.7
r5 2 2.0 2 2.0 6.8 3.4 81.7
r6 5 5.0 2 2.0 20.7 12.0 48.4
r7 4 4.0 1 1.0 41.0 24.2 -6.9
r8 13 13.0 1 1.0 29.4 13.2 39.0
r9 3 3.0 1 1.0 24.3 15.1 35.3
r10 6 6.0 1 1.0 41.7 24.3 -19.9
r11 5 5.0 1 1.0 37.4 20.1 -6.0
r1−11 100 100.0 39 39.0 22.7 37.2 39.0

eleven non redundant sequences from the can-
didate list. The selected representative set cov-
ers nonetheless 39% of the cases in the cluster
while the quality measure reaches its highest level
(Q = 39%). Indeed the discrepancy is high in this
group (V = 37.2) and representing the sequences
with their assigned representative rather than by
the center of the set significantly decreases the
sum of distances.

4.2 Comparing sorting criterions

Table 4 summarizes the outcome obtained with
each of the five proposed criteria. The Frequency,
Density and Likelihood criteria provide results
of quite equivalent quality while the Mean State
Frequency (MStFreq) and Centrality criteria are
clearly less satisfactory.

Table 4: Comparing criterions with trep=25%.

nr nb (%) MD Q
Cluster 1
Frequency 3 121 45.7 15.6 15.0
Density 3 121 45.7 15.6 15.0
Likelihood 3 121 45.7 15.6 15.0
MStFreq 2 82 30.9 25.2 -37.6
Centrality 7 104 39.2 18.1 1.4
Cluster 2
Frequency 3 69 45.1 16.6 29.4
Density 3 69 45.1 16.6 29.4
Likelihood 2 59 38.6 18.7 20.5
MStFreq 4 62 40.5 18.4 21.5
Centrality 3 39 25.5 29.9 -27.2
Cluster 3
Frequency 5 94 48.5 23.1 17.0
Density 6 100 51.5 19.3 30.6
Likelihood 8 105 54.1 18.2 34.8
MStFreq 3 81 41.8 31.2 -12.0
Centrality 4 67 34.5 31.3 -12.4
Cluster 4
Frequency 11 39 39.0 22.7 39.0
Density 11 37 37.0 23.8 35.9
Likelihood 7 42 42.0 26.5 28.8
MStFreq 12 36 36.0 29.3 21.3
Centrality 15 36 36.0 29.8 19.9

Selecting the representative sequences in a
candidate list sorted according to the distance to
the center yields poor results in many cases. In-
deed selecting representatives close from the cen-
ter of the group leads to poor representation of se-
quences that are far from it. The sometimes bad
results yielded with the Mean State Frequency
criterion is attributable to the nature of this cri-
terion, which while focusing on the state frequen-
cies completely ignores their timing.

From Table 4, it seems that among the three
winners, Density that is always ranked 1st or 2nd
is the best compromise. We may notice, however,
that no criterion yields systematically the small-
est number of representatives.

4.3 Size of the candidate list

Table 5 presents the results obtained after in-
creasing the trep threshold for the size of the can-
didate list to 75%. As a consequence the propor-
tion of well represented sequences is now at least
75%. This gain comes however at the cost of a
considerable increase in the number nr of selected
representative sequences. With this high trep, the
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Table 5: Comparing criterions with trep=75%.

nr nb (%) MD Q
Cluster 1
Frequency 58 224 84.5 4.4 76.0
Density 58 230 86.8 3.7 79.6
Likelihood 44 216 81.5 5.2 71.6
MStFreq 39 201 75.8 9.1 50.2
Centrality 40 202 76.2 9.4 48.5
Cluster 2
Frequency 27 129 84.3 5.0 78.9
Density 26 132 86.3 4.6 80.3
Likelihood 18 123 80.4 6.1 74.2
MStFreq 23 122 79.7 7.1 69.6
Centrality 23 119 77.8 8.5 64.0
Cluster 3
Frequency 50 158 81.4 8.2 70.7
Density 58 171 88.1 5.5 80.3
Likelihood 42 157 80.9 8.5 69.6
MStFreq 41 148 76.3 12.3 55.9
Centrality 52 156 80.4 10.4 62.6
Cluster 4
Frequency 48 87 87.0 5.6 84.9
Density 48 87 87.0 5.2 85.9
Likelihood 35 76 76.0 10.1 72.8
MStFreq 41 77 77.0 10.8 71.0
Centrality 46 76 76.0 10.1 72.8

results obtained with the Density criterion get the
best scores with any of the three considered qual-
ity measures for all four clusters. With Likelihood
and Frequency we get results of a quality close to
that yielded by Density, while the Mean Sate Fre-
quency and Centrality give again poorer results.

5 CONCLUSION

We have presented a flexible method for select-
ing and visualizing representatives of a set of se-
quences. The method attempts to find the small-
est number of representatives that achieve a given
coverage. Different indicators have been consid-
ered to measure representativeness and the cov-
erage can be evaluated by means of different se-
quence dissimilarity measures. The heuristic can
be fine tuned with various thresholds for con-
trolling the trade-off between size and quality
of the resulting representative set. The exper-
iments demonstrated how good our method is
for extracting in an readily interpretable way the
main features from sets of sequences. The pro-
posed tools are made available as functions of

the TraMineR R-package and are awaiting to be
tested with other data sets.
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