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Abstract. The strength of association between the row and column
variables in a cross table varies with the level of aggregation of each
variable. In many settings like the simultaneous discretization of two va-
riables, it is useful to determine the aggregation level that maximizes the
association. This paper deals with the behavior of association measures
with respect to the aggregation of rows and columns and proposes an
heuristic algorithm to (quasi-)maximize the association through aggre-
gation.

1 Introduction

This paper is concerned with the maximization of the association in a cross ta-
ble. In this perspective, it deals with the effect of the aggregation of the row
and column variables on association measures and proposes an aggregation al-
gorithm to (quasi-)maximize given association criteria. Indeed, the strength of
the association may vary with the level of aggregation. It is well known for in-
stance that aggregating identically distributed rows or columns does not affect
the Pearson or Likelihood ratio Chi-squares (see for example [4], p. 450) but
increases generally the value of association measures as illustrated for instance
by the simulations carried out in [5].

Maximizing the strength of the association is of importance in several fields.
For example, when analyzing survey sample data it is common to group items
to avoid categories with too few cases. For studying the association between
variables, as it is often the case in social sciences, it is, then, essential to under-
stand how the association may vary with the grouping of categories in order to
select the grouping that best reflects the association. This issue was discussed,
for instance, by Benzécri [1] with respect to the maximization of the Pearson’s
Chi-square.

A second motivation concerns discretization that is a major issue in super-
vised learning. In this framework, a joint aggregation of the predictor and the
response variable should be more efficient than an independent discretization
of each variable. Nevertheless, with the exception of the joint dichotomization
process considered by Breiman et al. [2], it seems that optimal solutions for par-
titioning values exist in the literature only for a single variable (see for instance
[8] for a survey). There is thus an obvious need for tools allowing a joint general

D.A. Zighed, J. Komorowski, and J. Żytkow (Eds.): PKDD 2000, LNAI 1910, pp. 593–598, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



594 G. Ritschard and N. Nicoloyannis

optimal discretization of two or more variables. The results presented here for
jointly partitioning the row and column values in an unfixed number of classes
are a first step in this direction.

The joint optimal partition can be found by scanning all possible groupings.
Since the number of these groupings increases exponentially with the number
of categories, such a systematic approach is, however, generally untractable. An
iterative process is thus introduced for determining the (quasi-)optimal partition
by successively aggregating two categories.

The distinction between nominal and ordinal variables is of first importance
in this partitioning issue. Indeed, with ordinal variables only an aggregation of
adjacent categories makes sense.

It is worth mentioning that the optimization problem considered here differs
from that of Benzécri [1], for which Celeux et al. [3] have proposed an algo-
rithm based on clustering techniques. These authors consider only partitions
into a fixed number of classes and maximize Pearson’s Chi-square. Unlike this
framework, our settings allow varying numbers of rows and columns. We have
therefore to rely on normalized association measures to compare configurations.

Section 2 illustrates with an example how the aggregation of row and column
values may affect the Chi-square statistics and the association measures. The
formal framework and the notations are described in Section 3. Section 4 specifies
the complexity of the enumeration search of the optimal solution and proposes
an heuristic algorithm heuristic. Section 5 summarizes a sensitivity analysis of
association measures. Finally, Section 6 proposes some concluding remarks.

2 Example and Intuitive Results

Consider the following cross table between a row variable x and a column varia-
ble y

M = x\y A B C D
a 10 10 1 1
b 10 10 1 1
c 1 1 10 10
d 1 1 10 10

.

Intuitively, aggregating two identical columns, {A, B} or {C, D}, should increase
the association level. The same holds for a grouping of rows {a, b} or {c, d}. On
the other hand, grouping categories B and C for example reduces the contrast
between column distributions and should therefore reduce the association. Let
us illustrate these effects by considering the aggregated tables

M+
y = x\y A B {C, D}

a 10 10 2
b 10 10 2
c 1 1 20
d 1 1 20

M+
xy = x\y A B {C, D}

a 10 10 2
b 10 10 2

{c, d} 2 2 40
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and

M−y = x\y A {B, C} D
a 10 11 1
b 10 11 1
c 1 11 10
d 1 11 10

M−xy = x\y A {B, C} D
a 10 11 1

{b, c} 11 22 11
d 1 11 10

.

Table 1. Association measures for different groupings

M M+
y M+

xy M−y M−xy

rows 4 4 3 4 3
columns 4 3 3 3 3
df 9 6 4 6 4
Pearson Chi-square 58.91 58.91 58.91 29.45 14.73
Likelihood Ratio 68.38 68.38 68.38 34.19 17.09
Tschuprow’s t 0.47 0.52 0.58 0.37 0.29
Cramer’s v 0.47 0.58 0.58 0.41 0.29
Goodman-Kruskal τy←x 0.22 0.40 0.40 0.13 0.07
Goodman-Kruskal τx←y 0.22 0.22 0.40 0.11 0.07
Uncertainty Coefficient uy←x 0.28 0.37 0.37 0.19 0.09
Uncertainty Coefficient ux←y 0.28 0.28 0.37 0.14 0.09
Goodman-Kruskal γ 0.68 0.77 0.80 0.63 0.57
Kendall’s τb 0.55 0.60 0.65 0.45 0.37
Somers’ dy←x 0.55 0.55 0.65 0.41 0.37
Somers’ dx←y 0.55 0.65 0.65 0.49 0.37

Table 1 gives the values of a set of nominal (t, v, τ , u) and ordinal (γ, τb, d)
association measures for cross table M and the four aggregated tables considered.
The nominal τ and u and the ordinal d are directional measures. For more details
on these measures see fo instance [5]. According to the distributional equivalence
property, the Chi-square statistics remain the same for tables M , M+

y and M+
xy.

However, the association measures increase as expected with the grouping of
similar columns and rows. The figures for the aggregated tables M−y and M−xy

show that the aggregation of columns or rows very differently distributed reduces
both the Chi-squares and the association measures.

3 Notations and Formal Framework

Let x and y be two variables with respectively r and c different states. Crossing
variable x with y generates a contingency table Tr×c with r rows and c columns.
Let θxy = θ(Tr×c) denote a generic association criterion for table Tr×c. Let Px be
a partition of the values of x, and Py a partition of the states of y. Each couple
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(Px, Py) defines then a contingency table T (Px, Py). The optimization problem
considered is the maximization of the association among the set of couples of
partitions (Px, Py)

max
Px,Py

θ
(
T (Px, Py)

)
(1)

For ordinal variables, hence for interval or ratio variables, only partitions
obtained by aggregating adjacent categories make sense. We consider then the
restricted program 


max
Px,Py

θ
(
T (Px, Py)

)
u.c. Px ∈ Ax and Py ∈ Ay

(2)

where Ax and Ay stand for the sets of partitions obtained by grouping adjacent
values of x and y. Letting Px and Py be the unrestricted sets of partitions,
we have for c, r > 2, Ax ⊂ Px and Ay ⊂ Py. Finally, note that for ordinal
association measures that may take negative values, maximizing the strength
of the association requires to take the absolute value of the ordinal association
measure as objective function θ

(
T (Px, Py)

)
.

4 Complexity of the Optimal Solution

4.1 Complexity of the Enumerative Approach

To find the optimal solution, we have to explore all possible groupings of both
the rows and the columns, i.e. the set of couples (Px, Py). The number of cases
to be checked is given by #Px#Py, i.e. the number of row groupings times the
number of column groupings.

For a nominal variable, the number of possible groupings is the number
B(c) = #P of partitions of its c categories. It may be computed iteratively
by means of Bell formula

B(c) =
c−1∑
k=0

(
c − 1

k

)
B(k)

with B(0) = 1. For c = r, the number B(c)B(r) of configurations to be explored
is then for example respectively 25, 225, 2′704 and 41′209 for c = 3, 4, 5, 6 and
exceeds 13 · 109 for c = r = 10.

For ordinal variables, hence for discretization issues, only adjacent groupings
are considered. This reduces the number of cases to browse. The number G(c) =
#A of different groupings of c values is

G(c) =
c−1∑
k=0

(
c − 1

k

)
= 2(c−1) .

There are thus respectively G(c)G(r) = 16, 64, 256, 1′024 configurations to
browse for a square table with c = r = 3, 4, 5, 6, and more than a million for
c = r = 10.
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4.2 An Heuristic

Due to the limitation of the enumerative approach, we propose an iterative
process that successively aggregates the two row or column categories that most
improve the association criteria θ(T ). Such an heuristic may indeed not end up
with the optimal solution, but perhaps only with a quasi-optimal solution.

Formally, the configuration (P k
x , P k

y ) obtained at step k is the solution of



max
Px,Py

θ
(
T (Px, Py)

)

u.c. Px = P
(k−1)
x and Py ∈ P(k−1)

y

or
Px ∈ P(k−1)

x and Py = P
(k−1)
y

, (3)

where P(k−1)
x stands for the set of partitions on x resulting from the grouping

of two classes of the partition P
(k−1)
x .

For ordinal variables, P(k−1)
x and P(k−1)

y should be replaced by the sets A(k−1)
x

and A(k−1)
y of partitions resulting from the aggregation of two adjacent elements.

Starting with T 0 = Tr×c the table associated to the finest categories of
variables x and y, the algorithm successively determines the tables T k, k =
1, 2, . . . corresponding to the partitions solution of (3). The process continues
while θ(T k) ≥ θ(T (k−1)) and is stopped when the best grouping of two categories
leads to a reduction of the criteria.

The quasi-optimal grouping is the couple (P k
x , P k

y ) solution of (3) at the step
k where

θ
(
T (k+1)) − θ

(
T k

)
< 0 and θ

(
T k

) − θ
(
T (k−1)) ≥ 0

By convention, we set the value of the association criteria θ(T ) to zero for
any table with a single row or column. The algorithm then ends up with such a
single value table, if and only if all rows (columns), are equivalently distributed.

5 Effect of Aggregating Two Categories

For the heuristic proposed, it is essential to understand how the association
criteria behave in response to the aggregation of two categories. We have the-
refore carried out an analytical sensitivity analysis reported in [7] of which we
summarize here the main results.

Chi-square statistics remain constant when the two aggregated categories are
equivalently distributed and decrease otherwise.

Chi-square based measures: Tschuprow’s t can increase when r or c decreases.
Cramer’s v may only increase when the aggregation is done on the variable with
the smaller number (min{r, c}) of categories.

Nominal PRE measures: τy←x and uy←x may only increase with an aggre-
gation on the dependent variable.
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Ordinal measures: Their absolute value may increase for an aggregation on
any variable. In the case of an aggregation of two equivalently distributed cate-
gories |γ| and |τb| increase while |τc| increases if min{r, c} decreases and |dy←x|
increases when the aggregation is done on the independent variable x and re-
mains constant otherwise.

6 Further Developments

This paper is concerned with the issue of finding the partitions of the row and
column categories that maximizes the association. The results presented, on the
complexity of the solution and on the sensitivity of the association criteria toward
aggregation, are only preliminary materials. A lot remains to be done, especi-
ally concerning the properties and implementation of the algorithm sketched in
Section 4.2. Let us just mention two important aspects. First, we have to empi-
rically assess the efficiency of the heuristic. We are presently building simulation
designs to check how the quasi-optimal solution provided by the algorithm may
differ from the true global optimal solution. From the results of Section 4.1, the
comparison with the true solution is only possible for reasonably sized starting
tables, say tables with six rows and six columns. Secondly, it is worth to take
account of the higher reliability of large figures. The algorithm will therefore be
extended by implementing Laplace’s estimates of the probabilities to increase
the robustness of the solution.
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