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This chapter has essentially a methodological purpose. It discusses recent
advances in statistical event history analysis and Markov models and pro-
motes the use of tools from the developing field of data mining, with special
attention to the discovering of characteristic sequences and induction trees.
Before turning to these methodological aspects, we begin here by explaining
why demographers have been relatively reluctant to implement the life
course paradigm and methods, while the quantitative focus and the concepts
of demographic analysis a priori favored such implementation. A real in-
tellectual crisis has been needed before demographers integrated the neces-
sity to face up the challenge of shifting ‘‘from structure to process, from
macro to micro, from analysis to synthesis, from certainty to uncertainty’’
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(Willekens, 1999, p. 26). This retrospective look also shows impressive
progresses to promote a real interdisciplinarity in population studies, knot-
ting the ties between demography and the social sciences.

Although demographic analysis has a long history (see Dupâquier &
Dupâquier, 1985), the methods still used today have essentially been elab-
orated between the mid-nineteenth and the mid-twentieth centuries in West-
ern societies that felt successively threatened by race degeneration, declining
birth rates, and ageing. The macro frame was that of the demographic
transition, i.e. the evolution from young populations with high fertility and
high (especially infant and child) mortality to ageing populations with net
reproduction below the threshold of generations’ renewal and a tremendous
increase in life expectancy at birth.

From a methodological point of view, a starting point in demographic
analysis has been the mortality table. It implies a dynamic perception of
population with entrances (births or in-migrations) and exits (deaths or out-
migrations), and the idea that other events (like migration) can censor a given
risk (like mortality). It rapidly constrained the conceptual distinction between
a generation – i.e. those who are born in the same year or period – and a
cohort – i.e. those who are experiencing an event (marriage for example) in
the same year or period. The mortality table also resulted not only in an
average age at death but also in a distribution of the risk along the life course,
providing a survival curve. Finally, the immediate comparison of these curves
among sexes, and even more among matrimonial statuses, revealed selection
processes, like those supporting the over-mortality of singles compared to
married people. Heterogeneity and differential frailty were not ignored. After
the generalization of mortality analysis (from mortality- to life tables), cer-
tainly no scientific discipline was better prepared for the life course methods
than demography. Nevertheless, the paradigms clearly diverged.

First, dealing with structures and flows, demography has been a science of
reconstruction and description of patterns and behaviors, through a well-
established quantitative methodology, and the conviction that higher the
number of observations, more accurate – and possibly useful – were the
results (for a typical example, see Vallin, 2001). Demography was a science of
the masses, growing or stagnating, young or old, but not of the individuals!

Second, the engagement of generations of scholars was largely motivated
by the central character of population issues and the location of demo-
graphy at a crossroad between economy, sociology, epidemiological studies,
territorial analysis, political sciences, and, more recently, cultural and
gender approaches. However, research and collaborations were in reality
highly segmented, with a clear tendency to specialization on a geographical
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and/or thematic basis (typically mortality, fertility, marriage and family
formation, or dissolution, migrations, structures, prospective). Among
many others, the last edition of the excellent Encyclopedia of Population

(Demeny & McNicoll, 2003) illustrates that propensity. Such segmentation
was clearly inscribed in the methods. In the estimations of mortality,
mobility was statistically treated as a censor but explicitly presented as a bias
for a ‘‘pure’’ analysis of mortality. Clearly, the approach consisted in stud-
ying a demographic behavior as independently as possible from the other
ones, without systemic perspectives.

Third, the demographic evolution made apparent the limits of the es-
tablished methodology. Both mortality and life tables can be calculated
longitudinally based on the observation of generations, or on cross-
sectional data, i.e. the observation of deaths by age classes at a given time
point – mixing thus generations with different history together. For the
simplest table, that of mortality, since expectation of life at birth now ex-
ceeds 80, the longitudinal approach implies a population reconstruction
from at least the 1920s, what is quite difficult, especially if we do not accept
the hypothesis of a null effect of migration. Inversely, all the statistical
offices of the developed countries collect the data for the calculation of
cross-sectional measures for a long time. However, can we accept the under-
lying hypothesis of continuity while the duration of life wins 1 year every
3–4 years and while we know that the – generational – age distribution of
those gains has drastically changed during the last decades? Similarly, while
in the context of the so-called ‘‘second demographic transition’’ there are so
many changes in the fertility calendar, do we have to constrain ourselves to
the observation of those generations who have finished their fertile life and
renounce to study the present with other indicators than those of the mo-
ment? What is today the rationale of detailing the access to marriage while
cohabitation is rising? How record an informal event like entrance in co-
habitation? Both data collection and analytical tools have been challenged
by recent changes in demographic behaviors and family dynamics (for a
more in-depth discussion of those issues, see Caselli, Vallin, & Wunsch,
2001).

A real intellectual crisis resulted from the hesitation about the status of
demography within the social sciences, as well as from the frustration
against segmentation and the deficiency of old methods. The conscience that
description, especially some quantification with a pretension of objectivity,
hid and diffused ideological visions about ‘‘good’’ or ‘‘optimal’’ populations
also grew (Greenhalgh, 1996; van de Kaa, 1996; Véron, 1993; Szreter, 1993;
Hogdson, 1988, 1991).
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Among the many reactions, revisions, and re-examinations, new
approaches and new methods rapidly emerged. No significant use of the
life course statistical tools can be observed before the mid-1980s, while for
example Cox’s foundling paper is dated 1972. When they finally have been
integrated by demographers, the new methods found many uses. Probably
the most obvious progress they supported was to replace demography in its
family setting. Something that could seem very strange, but perfectly illus-
trates this assertion, is indeed the discovery, precisely in the 1980s, of an
almost complete absence of dialogue between demography and family
sociology. While family is the place where most of the demographic be-
haviors take place and, to some extent, are decided, ‘‘few textbooks on
population contain a chapter devoted to the demography of the family.
Where such chapter does exist, it is generally shorter and more superficial
than those that deal with fertility, mortality, nuptiality, and migration, or
with the dynamics of age structure’’ (Höhn, 1992, p. 3). In 1982, the In-

ternational Union for the Scientific Study of Population created an ad hoc
committee to develop its study, but even in 1992 the animators of this group
saw family demography as ‘‘a recent and relatively underdeveloped branch
of population studies’’ (Berquo & Xenos, 1992, p. 8).

Its development has been extraordinary in the last years. Francesco Billari
chapter in this volume provides a nice illustration of such a change, which is
part of a shift from macro to micro, from an emphasis on macro-economic
evolutions as the essential determinants of demographic ‘‘answers’’, to a
multi-causal – multivariate – approach of behaviors, a shift also from av-
erage results to a more detailed study of distributions. In a quantitative
discipline, major evolutions necessarily imply to take up technical challeng-
es. ‘‘The traditional demographic analysis of such events as births, mar-
riages, divorces, deaths, and migration has the advantage that number of
these events can be related to individuals in the same age group and can,
therefore, be measured more easily and included in models. The inclusion of
other family members in such analyses causes difficulties because they will
generally differ in age and sex, and complications are also introduced be-
cause they do not generally live together continuously’’ (Höhn, 1992, p. 3).

Although several attempts have been made to construct a ‘‘household
demography’’ (Van Imhoff, Kuijsten, Hooimeijer, & van Wissen, 1995), the
life course paradigm and its methodological individualism clearly imposed
themselves. Offering both concepts and statistical methods, it represents a
shift toward microanalysis of individual data and causal research that not
only deeply renews the discipline, but also provides the vocabulary for a new
interdisciplinarity, first within the social sciences, then beyond (Blossfeld &
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Rohwer, 2002; Dykstra & van Wissen, 1999). The first substantial gain has
been the study of multiple events, marriage and first birth, or moving and
starting a new job for instance, a kind of investigation that also raises the
issue of event sequencing and interactions that is typically treated with event
history analysis. If people have several careers that they must make com-
patible, their life transitions also reflect socioeconomic constraints, cultural
norms (about the ‘‘proper’’ age, sex, or behavior), as well as compromises
between several individual aspirations within or beyond the domestic unit.
Through researches in this huge area, family demography made for sure
tremendous progress during the last 20 years.

However, the shift has been so sudden that globally the complexity of
causalities remains too often underestimated (see Courgeau & Lelièvre,
1993; Blossfeld & Rohwer, 2002; Bocquier, 1996; Alter, 1998; Billari, 2005),
as well as several technical traps. The problem is essentially that when
studying a population of individuals observed along the time, since each life,
the product of complex and multiple interactions is, as a matter of fact,
unique. Hence, interpreting and generalizing from samples require several
cautions. In the next section, we recall the main event history regression
models and discuss the question of heterogeneity. We cannot consider that
the elaboration of indicators at an individual level about household, family,
and community contexts is enough to deal with the more and more raised
issue of ‘‘linked’’ or ‘‘interdependent’’ lives (Hagestad, 2003). We show the
interest of robust estimates and shared frailty in that perspective. In the
same section, we also present the Markovian models that are particularly
useful for the study of transitions within a set of states (matrimonial or
social status, for example) periodically observed. In the interdisciplinary
perspective, which is one of the life courses, we consider it important to go
beyond the simple transitions typically studied in demography (from single
to married, from the first to a possible second child, from life to death, and
so on), and to investigate how, from a starting position, a destination is
selected among several possible. While family dynamics and life courses are
more and more open, such investigations are essential to deal with the
characterization of transitions as ‘‘normal’’ or ‘‘non-normal’’ without falling
again in the trap of ideological reading (see, for example, the discussion in
Oris & Poulain (2003) about the stigmatization of early home leaving).

Indeed, we assess more globally that there is a deficit of research on
trajectories between aggregate descriptions and causal analysis. Regression
models attempt to quantify how a factor, measured by an indicator, affects a
risk. However, such results tell us nothing about the calendar and no more
about the alternatives to this risk in life courses. It is essential to look
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carefully at transitions in trajectories to target properly a causal analysis,
and this step is clearly too often superficial, if not absent. Several methods,
recently developed or recently made available in statistical packages, offer
opportunities to fill this gap. Among them, we promote in Section 3 some
highly flexible heuristic tools from the developing field of data mining, es-
pecially mining event-sequential association rules, and induction trees that
seem to us the more promising for life course data analysis.
2. STATISTICAL MODELING OF LIFE EVENTS

Life course data are longitudinal in their essence. Here, we focus on events,
an event being the change of state of some discrete variable, e.g. the marital
status, the number of children, the job, or the place of residence. Such data
are collected mainly in two ways: as a collection of time-stamped events or
as state sequences. In the former case, each individual is described by a
collection of time-stamped events, i.e. the realization of each event of in-
terest (e.g. being married, birth of a child, end of job, moving) is mentioned
together with the time at which it occurred. In the latter case, the life events
of each individual are represented by the sequence of states of the variables
of interest. Panel data are special cases of state sequences where the states
are observed at periodic time. The first kind of data is typically analyzed
with event history regression methods, while methods for state-sequence
analysis like Markov transition models are best suited for the latter. We
briefly discuss hereafter the scope and limits of these approaches.
2.1. Event History Regression Models

When we have time-stamped events, the question of interest is the duration
of the spell between two successive events, or somewhat equivalently, the
hazard rate h(t) for the next event to occur precisely after a duration t, i.e.
the conditional probability for the event to occur at t knowing that it did not
occur before t. Longitudinal-regression models focus on this aspect. They
express either the duration or the hazard rate as a function of covariates. It
is worth mentioning that these models are also known as survival models,
especially in area like biomedicine and engineering where the event of con-
cern is just death or breakdown.

There are continuous-time models and discrete-time forms. With contin-
uous time, the main formulations (see Blossfeld, Hamerle, & Mayer, 1989;
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Courgeau & Lelièvre, 1993) are as a duration model or as a proportional-
hazards model. Duration models consider ln(T), the logarithm of the time to
the event, as a linear function of the explanatory factors. Proportional-
hazards models suppose that the ratio between the hazard for a given profile
(in terms of the covariates) and that for a reference baseline profile remains
constant over time and expresses the logarithm of this ratio (or proportion)
as a linear function of the covariates.

Duration models, also known as accelerated failure time models, assume
usually an exponential, Weibull, log-normal, log-logistic, or gamma distri-
bution for the duration T. The proportional-hazards model is compatible
with for instance, exponential, Weibull, and Gompertz duration distribu-
tions. It includes also the perhaps most widely used Cox (1972) semi-
parametric model that requires no assumptions on the form of the duration
distribution. Most statistical packages (SAS, S-Plus, Stata, R, TDA, etc.)
provide procedures for estimating such models. At least until version 13,
SPSS, however, offers only support for the Cox model.

Discrete-time models (see Allison, 1982; Yamaguchi, 1991) include the
proportional hazard-odds model, also owe to Cox (1972), the discrete pro-

portional-hazards model (Aranza–Ordaz, 1983), and the log-rate model
(Holford, 1980). In the first model, it is not just the hazard ratio, but the
ratio of the odds of the hazards that is supposed to be constant and having a
logarithm depending linearly on the covariates. The discrete proportional
hazards model expresses the log minus log of the complementary hazard as a
linear function of the covariates. The log-rate model on its side expresses the
log-hazard in terms of proper and interaction effects of categorical variables
and also possibly of their interactions with duration.

For the estimation of the proportional hazard-odds model, some as-
sumptions are usually required upon the baseline hazard-odds. Letting b0t
be the baseline log hazard-odds after a duration t, the most common as-
sumptions are that it remains constant with t, is linear in t (Gompertz), or is
linear in ln(t) (Weibull). With these assumptions, a proportional hazard-
odds model can, if we organize the data in a person–period form, simply be
estimated as a logistic regression. Hence, it can be estimated by any software
that proposes logistic regression. Likewise, a log-rate model can be esti-
mated with any log-linear model procedure that allows for weighted cell
frequencies. Indeed, the log-rate model is a log-linear model of the weighted
number of events occurring in a time interval, the weight being the inverse of
the population at risk in this interval. The fitting of a discrete proportional
hazards model requires the perhaps less frequently implemented procedures
for binary regression with a complementary log-log link.
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A common issue with the time to event models is the handling of censored
data. Censored data occur when the observed start (left) and/or end (right)
time of a spell are not its actual start and end time. For instance, if we
observe job duration, some jobs may not be terminated at the time of the
survey and are hence right-censored. Though no event is recorded at the
end of the right-censored spells, these cases are taken into account by
entering the population at risk for job length lower or equal to the observed
duration.

Another issue is the handling of time-varying covariates. The solution is
quite straightforward in the discrete-time setting that works on person–time
data. For the continuous case, there are two major solutions: an ad hoc
extension of the Cox model that allows for discrete-time-varying covariate
and the episode-splitting approach (see Blossfeld & Rohwer, 2002 for de-
tails). Time-varying covariates offer a way to test and relax the somehow
strong proportionality assumption required by most hazard-rate models.
Indeed, this assumption implies the time independency of the ratio of haz-
ards of any two individuals, which clearly does not hold when the ratio
depends on a time-varying variable. It is common practice to check the
significance of the interaction of a supposed time-independent variable with
t or ln(t). A significant interaction would provide evidence against time
invariance (see Therneau & Grambsch, 2000 for other tests of proportional
hazards and more advanced developments of the Cox model).

This event-history modeling, especially the Cox proportional-hazards and
discrete-time proportional hazard-odds models, has become popular among
demographers. Together with other social science scientists, historical
demographers have to face issues like competing events (multiple destina-
tions), repeatable events, and interacting events. The first two can easily be
handled with a software like TDA (Rohwer & Pötter, 2002) that supports
episodes defined by four parameters, namely the origin state, the start time,
the destination state, and the end time. The interaction between events,
marriage end, and first child, for instance, needs a simultaneous equation
approach that has been investigated by Lillard (1993), and is discussed more
in depth in Billari’s contribution to this volume.

2.1.1. Shared Heterogeneity and Multi-Level Modeling

A further issue of importance, shared heterogeneity, is concerned with the
sampling nature of the data. These are often clustered, i.e. the individual
data come from a selection of groups, parishes, or families for example. In
such cases, members of a same group share a same contextual framework
and it is then of primary importance to distinguish effects that hold at the
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group level from those that work at the individual level. A very concrete
example is the study of orphans’ survival after father’s death by Beekink,
van Poppel, and Liefbroer (1999) for a 19th-century Dutch provincial town.
In the event-history file, initially each orphan was considered as a single
individual while there were not individuals but groups of siblings that en-
tered in the population at risk because of a shared event – dad’s death – and
supported this experience while sharing the same household context. Taking
into account the interrelatedness of the observations changed the results!
Along the same line, both in contemporary and historical demography, the
issue of the death clustering at the family level is a growing concern (Alter,
Oris, & Broström, 2001). All those studies extend the original discussion of
‘‘the impact of heterogeneity in individual frailty on the dynamics of mor-
tality’’ by Vaupel, Manton, and Stallard (1979).

To explain this aspect, let us consider the case of a simple linear regression
of the number of children on the education level in the presence of three
clusters like those depicted in Fig. 1, where the clusters are, let us say, three
villages. A simple regression on the whole data set is a straight line with a
positive slope, indicating that the number of children increases with edu-
cation. This effect clearly holds at the aggregated village level, i.e. the higher
the average education level in a village, the higher the average number of
children. This aggregated effect results despite the regression is fitted on
individual data. A separate regression on each cluster exhibits a negative
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Fig. 1. Multi-Level: A Simple Example with Three Clusters.



Table 1. Alternative Linear Models in Presence of G Clusters g.

Model Constant Effect of

Covariate

Variance of

Error Term

Number of

Parameters

m1 Average model Same Same Same 1+c+1

m2 Independent Group specific Group specific Group specific G(1+c+1)

m3 Seemingly

independent

Group specific Group specific Same G(1+c)+1

m4 Dummies Group specific Same Same G+c+1

m5 Random effects Random across

groups

Random across

groups

Same 2(1+c)+1

m6 Shared frailty Random across

groups

Same Same 2+c+1
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slope in each of the three villages, indicating a negative effect of education
on the number of children at the individual level. Indeed similar misleading
results may appear when event-history regressions are fitted on clustered
data as illustrated by the examples discussed by Beekink et al. (1999) and
Alter et al. (2001). What are the solutions?

Table 1 summarizes alternative formulations that can be adopted when
we are in the presence of G groups. For simplicity, we consider here re-
gression models with c covariates, generalization to more complex models
like event-history models being straightforward. Model m1 will capture ef-
fects at the group level. In models m2–m4, differences between groups are
introduced by means of additional parameters, an approach that is suitable
as long as G is not too large. Model m2 fits separate models on each clusters,
while in m3, the regressions are only seemingly independent, since the var-
iance of the error term is supposed to be the same in each group. Model m4
corresponds to the well-known case where, for each group, a specific effect is
introduced as a dummy variable. For a large number of groups, random
effect models1 m5 and m6 are best suited. In these models, the regression
coefficients are allowed to vary randomly from one group to another. In the
shared frailty formulation, only the constant is random, while the other
coefficients remain the same for all groups. The main advantage of these
random effect formulations is that their number of parameters is, as can be
shown from the last column, independent of the number of clusters. Ran-
dom effect models m5 and m6 may, therefore, have a much lower number of
parameters than models m2–m4 when G is large.

Even if we are interested in the aggregated effect, estimating them with
individual data, as with model m1, for example, requires some caution.
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Indeed, the standard errors of the aggregated effects are derived from in-
dividual residuals, which may either over- or underestimate the between-
group discrepancy. For instance, in our example of Fig. 1, leaving out in
turn each of the three groups leads to great variations in the slope that
would be underestimated by the classical standard error. This aspect has
been investigated among others by Kish and Frankel (1974) and, for the
Cox model, for instance, by Lin and Wei (1989). In such settings, it is good
practice to use robust estimates of the variance of the regression coefficients.
Such robust estimates are usually obtained as grouped jackknife estimates,
i.e. by measuring the discrepancy of estimates obtained by leaving out suc-
cessively each of the G clusters, and can be expressed as sandwich estimates
(see Therneau & Grambsch, 2000, pp. 170–173).

Facilities for dealing with clusters are offered by several statistical systems,
Stata 8, S-Plus 6.2, and R 2.0 for instance. All the three mentioned programs
propose options to get robust standard errors. They also permit the intro-
duction of a shared frailty in parametric-hazard rate and Cox models. Com-
plete random effects are only available with discrete models that can be fitted
with logistic regression procedures. Indeed, logistic models are special cases
of generalized linear models (GLM).2 Hence, multilevel-logistic regression
is available whenever multilevel GLM is implemented. Barber, Murphy,
Axinn, and Maples (2000), for instance, show how to estimate a model with
several random effects with the HLM (Bryk, Raudenbush, & Congdon,
1996) and MLN (Goldstein et al., 1998) programs.

2.1.2. Illustration

To illustrate the scope of robust standard errors and shared frailty, we
consider a data set of 5,351 migrants collected from the 19th-century pop-
ulation registers of the Belgian commune of Sart (see Alter & Oris, 2000;
Alter et al., 2001, for a detailed description). This data set provides, among
others, information about the emigration date, the destination and the date
of return after emigration. Table 2 shows results of the fit of a continuous-
time Cox model. The hazard modeled is that of return after a time between 0
and 5 years, no return or return after 5 years being censored. We fitted a
basic model, i.e. without the cluster or frailty options, the same model but
requesting robust standard errors for the coefficients, and the model with a
gamma g(1/y,1/y) distributed frailty term shared by members of a same
family.3

The hazard ratios reported are just the exponential of the coefficients.
They indicate the hazard ratio for two profiles that differ by one unit of
the corresponding variable. For the frailty model this interpretation holds,



Table 2. Cox Model for Return within 5 Years after Emigration.

Coefficient Hazard Ratio p-Value (in %)

Basic Frailty Basic Frailty Basic Robust Frailty

Economic ratio 1.02 0.30 2.76 1.35 0.2 3.8 45.0

Man �0.28 �0.18 0.76 0.83 0.1 0.2 5.6

Single 0.40 0.52 1.49 1.68 1.2 1.2 0.3

Born in Ardennes 0.25 0.17 1.29 1.18 4.1 15.0 28.0

Age when leaving 0.01 0.00 1.01 1.00 12.0 17.0 62.0

To Ardennes Destination reference category

To rural �0.32 �0.60 0.73 0.55 5.7 14.0 0.2

To urban/indust �0.07 �0.23 0.93 0.79 50.0 68.0 6.8

To other �1.25 �1.25 0.29 0.29 0.0 0.0 0.0

Head or spouse of Parenthood reference category

Child of head 0.02 �0.25 1.02 0.78 89.0 90.0 19.0

Other parenthood 0.12 �0.27 1.13 0.76 54.0 56.0 26.0

No parenthood �0.50 �0.54 0.61 0.58 6.7 7.3 9.0

Standard deviation
ffiffiffi

y
p

of family effect 1.75 0.0

Note: Sart 1812–1900, n ¼ 5,351.
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assuming the two profiles have the same frailty. For instance, according to
the basic model, the chances to return for a single are about one and a half
times the chances to return for a non-single. Likewise, the probability to
return is for a man about 3/4 of that for a woman. We checked on the basic
model that none of the time-covariate interactions is significant, which
comforts the proportionality assumption.

The coefficients are indeed the same for the basic and robust standard-
errors models. The significance of the coefficients differs, however, as can be
seen from the p-values. To be born in the Ardennes is significant at the 5%
level when we do not care about the cluster effect, while it is clearly not when
we control for it. This indicates that the seemingly significant birth-place
effect does not work at the family aggregated level. Likewise, we may notice
that, though the effect of the household economic ratio is significant among
families, its significance is not as clear as we would expect from the basic
model.

Let us now look at the results with a family shared frailty. First, we
may notice the highly significant variance of the random term, which
clearly indicates a between-families discrepancy. Two variables that looked
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significant become non-significant, namely the gender (man) and the eco-
nomic ratio. This is not surprising for the latter, which is a typical family
contextual factor shared by members of the same family. Gender, on the
other hand, is clearly an individual characteristic. Its lack of significance in
the frailty model seems to indicate that the effect is not systematic within the
families. Its overall significance follows probably from differences among
male and female singles. A reverse phenomenon is observed for the rural
destination effect that becomes significantly different from the reference
Ardennes in the frailty model.
2.2. Markov Transition Models

In the presence of state sequences in panel data form, the natural question is
what are the transition probabilities from the states at time t�1 to the
possible states at time t, and how are these probabilities affected by indi-
vidual histories or contextual characteristics. Homogenous-Markov models
assume that these probabilities are independent of time t. In first-order
models, the transitions are supposed to depend only upon the state at t�1,
which means that the first lag summarizes the whole history of states at t�1
and before. Models of higher order k consider that the transitions depend on
k lags, i.e. on the states at t�k,y,t�1. Thus, basic Markov models state
that the transition probabilities remain constant over time and depend on a
limited, usually small, set of previous states.

Markov models of order k generate, when we are in the presence of
s states, sk transition distributions, i.e. a huge number of probabilities. They
may be approximated by mixture transition distribution (MTD) models
(Raftery & Tavaré, 1994; Berchtold, 2001; Berchtold & Raftery, 2002) that
involve a much lower number of parameters, which renders the models
easier to interpret.

Other extensions of the Markov model include the hidden Markov model
(HMM) (see Rabiner, 1989; MacDonald & Zucchini, 1997) in which the
successive states of the observed variables are only indirectly linked through
an unobserved Markov chain and the double chain Markov model
(DCMM) (Paliwal, 1993; Berchtold, 1999, 2002), which states that the ob-
served states are outcomes of a Markov process randomly selected by a
hidden process. The use of hidden processes is a way to relax the usually
strong homogeneity assumption. For example, when studying social mo-
bility with data covering a whole century, it is hardly defendable to assume
that the same process works during the whole period (Lynch, 1998, p. 96).
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Despite their interest, there has been only a limited use of Markov mod-
els, especially of non-homogenous ones, by historians and demographers. A
search on ‘‘Markov’’ within the famous Population Index database4 results
in only 28 hits among thousands of references. Moreover, most of those 28
hits refer to working papers or highly focused articles (with an emphasis on
the study of multistate population dynamics). The main reason for such a
limited use is that standard statistical packages offer only limited facilities to
fit such models. The available tools require a heavy coding task that dis-
courages most potential users. We can expect, however, that Markov
modeling will become much more popular with the recent release of March 2
(Berchtold & Berchtold, 2004). This software offers a friendly way to es-
timate Markov models without writing down any line of code.
2.2.1. Illustration

To illustrate the nature of knowledge we can expect from such an analysis,
we consider here the Blossfeld and Rohwer (2002) sample of 600 job ep-
isodes extracted from the German Life History Study. The episodes have
been classified into three job-length categories: (1) p3 years, (2)43 and
p10 years, and (3)410 years, and the data reorganized into 162 individual
sequences of 2–9 job episodes, dropping the cases with a single episode. The
question considered is how the present episode length depends upon those of
the preceding jobs. Notice that the job-length sequences considered here are
not panel data, which demonstrates that Markovian models are not re-
stricted to panel data. In this setting, the subscript t refers simply to the
position in the sequence rather to a specific time period.

The first- and second-order homogenous transition matrices are given in
Table 3. The same table also gives the distribution of the independence
model in which the transition probabilities stay the same irrespective of the
previous job length. Let us briefly illustrate how these tables should be read.
The independence distribution implies that the overall probability for a new
job to be a short one is 50%, while this probability is 35% for a medium job
and 15% for a long job. The first-order matrix indicates that the probability
that a new job started after a short one has 57% chances to be again a short
job. This probability falls to 43% after a job of medium length and to 20%
after a long job. From the second-order matrix, it follows, for instance, that
this same probability is 55% when the preceding short job was itself pre-
ceded by a short one, 60% when the preceding short job followed a medium
job and 100% when the preceding short job followed a long job. The last
column in the tables gives the half-length of a conservative 95% confidence



Table 3. First and Second-Order Homogenous Markov Matrices.

Job Length at t Half Confidence

t–2 t–1 1 2 3 Interval

Independent 0.50 0.35 0.15 0.07

First Order 1 0.57 0.30 0.13 0.10

2 0.43 0.42 0.15 0.13

3 0.20 0.53 0.27 0.29

Second Order 1 1 0.55 0.30 0.15 0.11

2 1 0.60 0.30 0.10 0.20

3 1 1 0 0 0.65

1 2 0.37 0.45 0.18 0.18

2 2 0.50 0.41 0.09 0.20

3 2 0.45 0.33 0.22 0.38

1 3 0.33 0.17 0.50 0.46

2 3 0 0.87 0.13 0.40

3 3 1 0 0 1
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interval for the probabilities in the concerned row. Hence, probabilities
smaller than this half-length should be considered as non-significant.

A glance at these tables leads to the following remarks. The first-order
matrix exhibits some differences in the transition probabilities after a short
(1), medium (2), or long (3) job. After a first job, the probability to start a
short job is significantly higher than to start a medium or long job, while
this is not the case after a medium or long job. The second-order matrix
does not provide evidence on the impact of the second lag job length. The
main differences concern the transition probabilities after long jobs (3),
which are mostly not statistically significant due to the low number of cases
concerned. This was confirmed by fitting an MTD model for which we
obtained a weight of 1 for the first lag and, hence, 0 for the second lag.

For relaxing the homogeneity assumption, we consider an HMM model
with a two-hidden-state process. Fitting this model, we get the distribution
of the initial state of the hidden variable, the transition matrix of the hidden
process, and the distributions of the transition to the job-length categories
associated to each of the two hidden states. These results are given in
Table 4. In addition, we get estimates (not shown here) of the most likely
sequence of hidden states associated to each observed sequence. Looking at
the cross tabulation below of these estimated hidden states with the ob-
served job length we see that the first hidden state is mainly associated to



Table 4. Two State Hidden Markov Model.

Hidden State at Hidden State at t Half Confidence

t-1 t 1 2 Interval

Initial 0.56 0.44 0.11

1 0.78 0.22 0.12

2 0.53 0.47 0.19

Job Length at t

1 2 3

1 0.75 0.23 0.02 0.12

2 0.05 0.58 0.37 0.18
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short jobs and the second hidden state to medium and long jobs. This may
suggest considering only two types of jobs: p3 years and 43 years.
Hidden
 Observed
1
 2
 3
1
 118
 19
 0

2
 0
 65
 35
Table 5 summarizes goodness-of-fit statistics for our fitted models and for

the sake of comparison of the independence model. The shown statistics are
the number of independent parameters p, the deviance measured as minus
twice the log-likelihood5 (�2LogLik), the likelihood-ratio w2 statistics that
measures the improvement in �2LogLik over independence, its associated
degrees of freedom and its significance level, the pseudo R2 that gives the
relative improvement in �2LogLik and the Akaike (AIC) and Bayesian
(BIC) information criteria.6 These figures show that the fitted models do not
make much better than the independence model. We get the smallest
�2LogLik value for the second-order homogenous model, but at the cost of
11 additional independent parameters. The first-order homogenous model is
the only one that significantly improves the �2LogLik of the independence
model. It is also slightly better in terms of the AIC. However, no model
outperforms the independence model in terms of the BIC. These relatively
bad results are largely attributable here to the insufficient number of data
considered. This stresses a limitation of this Markov-modeling approach,



Table 5. Global Model Goodness-of-Fit Statistics.

Model m p �2LogLik w2 df Sig BIC AIC Pseudo R2

Independent 2 472.8 0 0 — 483.7 476.8 0

Homogenous order 1 6 462.6 10.2 4 0.04 495.4 474.6 0.022

Homogenous order 2 13 460.6 12.2 11 0.35 531.7 486.6 0.026

HMM 2 states 7 468.6 4.2 5 0.52 506.9 482.6 0.009

Note: Number of sequences ¼ 107, usable n ¼ 237.
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namely the complexity of the models in terms of number of estimated pa-
rameters that requires a very large number of data.
3. MINING LONGITUDINAL LIFE COURSE DATA

Despite the last decade great boost in the use of data-mining tools for the
knowledge discovery from data (KDD) in fields ranging from genetics to
finance, from marketing to medical diagnosing, from text analysis to image
or speech recognition, such approaches have received only little attention
for extracting interesting knowledge from longitudinal data describing life
courses. An important exception is Blockeel, Fürnkranz, Prskawetz, and
Billari (2001) who showed how mining frequent itemsets may be used to
detect temporal changes in event-sequences frequency from the Austrian
FFS data. In Billari, Fürnkranz, and Prskawetz (2000), three of the same
authors also experienced an induction-tree approach for exploring differ-
ences in Austrian and Italian life-event sequences. We initiated ourselves
(Oris, Ritschard, & Berchtold, 2003) social-mobility analysis with induction
trees.

Data mining is mainly concerned with the characterization of interesting
pattern, either per se (unsupervised learning) or for a classification or pre-
diction purpose (supervised learning). Unlike the statistical-modeling ap-
proach, it makes no assumptions about an underlying process generating the
data and proceeds mainly heuristically.

Beside their non-parametric or assumption-free characteristic, data-
mining methods present also the advantage for our social demographic
framework to be able to handle sequences of the various family, education,
work, health, emotional, and other personal events that define a life course.
They seem in that regard promising tools for gaining knowledge about life
trajectories and should thus usefully complement the previously discussed
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statistical methods. Event-history models, for example, focus on the risk of a
given transition, but do not provide insights on trajectories. Markov mod-
els, on the other hand, attempt to characterize the stochastic process that
drives successive transitions between states. They provide in that sense some
synthetic information about trajectories. However, only trajectories between
states of a generally unique variable, social, or civil status, for example, can
be investigated this way. Markov models, even those allowing for covari-
ates, can hardly handle together the various life events. Furthermore,
Markov models remain quite rigid by assuming that the transition prob-
abilities do not depend upon the present time but only on a small limited
number (the order of the model) of previous states. From a substantial
standpoint, the hereafter discussed sequence-mining approach is best suited
to discover among the many possible trajectories, for example, from the
diversity of formations to the diversity of working lives, those that are
typical of real life courses of real persons and by contrast those that are
atypical.

Since data-mining methods are mainly assumption-free, exploring trajec-
tories with them may answer to the criticisms of the French sociologist
Pierre Bourdieu (1986) about the ‘‘biographical delusion’’. Bourdieu, in fact,
denounced the concept of ‘‘life cycle’’, and its emphasis on norms, norms
supposed to lend to ‘‘normal’’ trajectories. With the assumption-free mining
of longitudinal data, we precisely pass the boarder between the ‘‘causality’’
or ‘‘data-modeling culture’’ and what Breiman (2001) calls the ‘‘algorithmic
culture’’ (see Billari, this volume).

In the rest of this section, we shortly describe the mining of sequential
rules and the induction tree approach, focusing on the nature of knowledge
we may expect from such tools (for a more general introduction to data
mining, see Hand, Mannila, & Smyth, 2001; or Han & Kamber, 2001).
These books cover many more methods. The two tools discussed here are,
however, in our mind, the two more promising ones for longitudinal data.
3.1. Mining Event-Sequential Association Rules

Each life course can be seen as a sequence of life events: birth, important
disease, recovering from disease, starting school, ending school, first job,
first union, leaving home, first child, death of father, marriage, etc. Mining
sequential-association rules aims at determining the most typical sequences
or subsequences together with their frequencies, and at deriving association
rules like having experienced the subsequence first job, first union, first child,
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is most likely to be followed by a sequence marriage, second child. By
contrast, indeed, mining frequent sequences and rules also reveals atypical
life courses. Note that event sequences differ from state sequences as con-
sidered by Markov models or optimal matching. Nevertheless, sequence
mining could as well be applied to state sequences.

Technically, the mining of frequent-event sequences and sequential-
association rules is a special case of the mining of frequent itemsets and
association rules. In data mining, an itemset is a set of items that are selected
together and an association rule is just a rule that says that if A occurs then
B is very likely to occur too. The basic tuning parameters of the mining
process are the support and the confidence thresholds. The support is the
minimal frequency in the database for an item set to be selected, while the
confidence of the rule is the probability that the consequence occurs when
the premise is observed. These basic-selection criteria are complemented by
other additional measure of the interestingness of the rule, like the propor-
tion of the rule its counter examples. Most algorithms for seeking frequent-
itemsets and rules are variants of the well-known Apriori algorithm
(Agrawal & Srikant, 1994; Mannila, Toivonen, & Verkamo, 1994). A typ-
ical application consists in finding the items that are more often ordered
together by customers. Sequences that we consider here differ from general
itemsets in that order matters. Multiple algorithms adapted for sequences
have been proposed since the pioneering contributions by Agrawal and
Srikant (1995) and Mannila, Toivonen, and Verkamo (1997).
3.1.1. Illustration

We have not yet ourselves experienced a sequential rule mining analysis on
demographic data. For the sake of illustration, we report here the analysis
carried out by Blockeel et al. (2001). The data considered originated from
the 1995 Austrian Fertility and Family Survey (FFS). The events analyzed
are those of the partnership and fertility retrospective histories of 4,581
women and 1,539 men aged between 20 and 54 at the survey time. The
observed women and men were partitioned into 5 years cohorts and the
objective of the analysis was to discover frequent partnership and birth
event patterns that mostly varied among cohorts.

The mining was done by means of the Warmr process implemented in the
ACE Data-Mining System (Blockeel, Dehaspe, Ramon, & Struyf, 2004).
The search was not limited to simple sequences of strictly ordered events but
allowed for more complex patterns combining multiple subsequences. An
important pattern found was having a child after first union and having
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both a marriage and a second child after this first birth, the marriage and
second child being not ordered. The seeking of such not strictly ordered
pattern requires indeed some filtering, namely the elimination of redundant
patterns. For example, completing the above mentioned pattern with the
additional condition of having a marriage after the first union would not
bring any new information and is therefore redundant. Also, the rules gen-
erated were restricted to premises refereeing to the cohort. Finally, only
patterns that exhibit a great discrepancy in the proportion of individuals
satisfying it in each cohort were retained.

Fig. 2 is an example of outcome provided by this analysis. It shows
the strong declining proportion of individuals who started their first union
when they married. The mining process found this pattern, i.e. date of first
union equals date of marriage, to be the one that exhibits the strongest
changes in frequency among cohorts. Indeed, many other patterns, some-
times more complicated, were also found to have great variability in their
frequency.
Fig. 2. Negative Trend in the Proportion of First Unions Starting at Marriage.

Source: Reproduced from Blockeel et al. (2001) with permission from the authors.
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3.2. Social Transition Analysis with Induction Trees

Let us now turn to induction trees and the insight they may provide on the
understanding of mobility. In mobility analysis, the focus is on how states at
previous time t�1, t�2,y, and possibly some additional covariates, influ-
ence the present state at t. This setting is very similar to that of Markovian
models. In contrast with this parametric-modeling approach, the tree in-
duction is, however, a non-parametric method. It provides a heuristic way to
catch how the previous states and covariates jointly influence the state at t.
Though we focus here on intergenerational social-mobility analysis, it is
worth mentioning that the scope of induction trees for life course analysis is
much broader. For instance, De Rose and Pallara (1997) used a tree
approach for segmenting time to marriage curves of Italian women; Billari
et al. (2000) used trees for analyzing differences in event sequences between
Austrians and Italians; and we can easily imagine many other applications.

Induction trees, i.e. decision trees induced from data, are basically su-
pervised classification tools (Quinlan, 1986). As pointed out in Ritschard
and Zighed (2003), they also convey powerful descriptive information. Their
learning principle is quite simple and they produce easily interpretable
results.

An induced tree defines rules for predicting the value of a response var-
iable from a set of potential predictors. The set of rules indeed characterizes
a partition of the cases, each rule defining a class. The prediction inside each
class of this partition is simply the modal-observed value when the response
is categorical and the mean observed value when it is quantitative. In the
quantitative case, the tree is called a regression tree (Breiman, Friedman,
Olshen, & Stone, 1984). Extension in this case includes model trees
(Malerba, Appice, Ceci, & Monopoli, 2002) and logistic model trees
(Landwehr, Hall, & Frank, 2003), which use a linear or logistic regression
for the prediction inside the classes of the partition. Tree algorithms have
also been proposed for predicting functions instead of values and those that
like RECPAM (Ciampi, Hogg, McKinney, & Thiffault, 1988) predict, for
instance, survival functions may be of special interest for life course analysis.
Here we consider only categorical responses, i.e. classification trees. The
easiest way to describe the tree induction principle is by looking at an
example. We begin therefore by describing the framework of the illustration
we will consider.

We use social family history data on intergenerational-social transition in
the 19th-century Geneva (Ryczkowska & Ritschard, 2004). The data were
collected from the marriage-registration acts that provide the profession of
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the spouses as well as that of their parents. For 572 acts, it has been pos-
sible to find a match with the marriage of the father of one of the spouses.
For these cases, we have the profession of the married man, of his father
at the son’s marriage, of the matched father at his own marriage, and of
the grandfather at the matched father marriage. The professions were
grouped into three social statuses, namely low, high, and clock and watch-
makers who formed an important specific corporation in the 19th century
Geneva.

The variable we want to predict is the status of the son at his marriage,
which is clearly a categorical response, and we consider four potential pre-
dictors. The first three are status variables, namely the status of the father at
son’s marriage, the status of the matched father at his own marriage, and the
status of the grandfather at father’s marriage. The fourth predictor is the
birthplace that can take one of the 12 values: Geneva city (GEcity); Geneva
surrounding land (GEland); neighboring France (neighbF); Vaud (VD);
which is a neighboring region of Geneva; Neuchatel (NE), a further
French-speaking region also specialized in watch and clock making, other
French-speaking Switzerland (otherFrCH), German-speaking Switzerland
(GermanCH), Italian-speaking Switzerland (TI), France (F), Germany (D),
Italy (I), and other. The grown tree is shown in Fig. 3.

The tree-growing principle is as follows. First, all cases are grouped to-
gether in a root node (at the top of the tree) in which the distribution of the
response variable, the status of the married man for our analysis, is its
marginal distribution. The goal is to split this group in new nodes such that
the distribution of the response variable differs as much as possible from one
node to the other. The splitting is done iteratively using the categorical
values of the predictor selected at each step. At the first step, we seek the
predictor that best splits the root node and split the node according to the
values of this predictor. The process is then repeated at each new node until
a stopping rule is reached. Stopping rules typically concern the minimal
node size, the maximal number of levels or the statistical significance of the
improvement in the optimized criterion. In our study, we have retained the
CHAID method (Kass, 1980) that selects at each step the predictor that,
when it is cross tabulated with the response variable, generates the most
significant independence w2 statistics.7 CHAID also seeks the aggrega-
tion level of the categories of the predictors that generates the most sig-
nificant w2 and then splits indeed according to the optimally merged
categories. We generated the tree of Fig. 3 with Answer Tree 3.1 (SPSS,
2001) by setting the minimal node size to 15 and requiring a maximal sig-
nificance level of 5%.



 

Fig. 3. Social Transition Tree with Birth Place Covariate.
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Alternative methods, among which CART proposed by Breiman et al.
(1984) and C4.5 due to Quinlan (1993) are among the best known, differ
mainly by the criteria used for selecting the split variable at each step.8

3.2.1. Knowledge Provided by the Tree

Looking at Fig. 3, we see that the first split is done according to the father
status at son’s marriage. This tells us that among the four attributes con-
sidered, the status of the father is the most discriminating. The status of the
married man depends, for instance, more on the father’s status than on his
birthplace. The distribution inside the nodes of the first level are just the
columns of the cross classification of the statuses of the father and the son.
We observe here that the clock makers form a much closed group with a
high probability for the son to become a clock maker when the father
himself is a clock maker while this probability is much lower for the three
other groups. A similar result holds for the high classes, while there are
evidences about social ascension possibilities when the father belongs to the
lower class.

Three of the four first-level nodes are split further. The only one that is
not split is that of married men whose father belongs to the clock and watch
makers. This node is thus a terminal leaf, which indicates that the status of
clock maker father conveys all the significant information for predicting the
status of the son. This is a consequence of the strong social reproduction
process inside the class of clock makers. The married men whose father was
dead are split according to the grandfather’s status, which means that the
grandfather’s status is more discriminating for this subgroup than the status
of the father at his own marriage. There is a strong tendency for the married
man to reproduce the grandfather’s status when the father is deceased. The
group defined by a high status of the father as well as that defined by a low
father’s status is split according to the birthplace. Both splits are binary.
They do not make use, however, of the same binary partition of birthplaces.
In both cases, i.e. with a father belonging to the low or high classes, the
men born in neighboring France, in German-speaking Switzerland, or in
Vaud have a relatively high probability to get only a low status. This is
also true for men born in French-speaking Switzerland outside Geneva and
Neuchatel when their father belongs to the lower class.

The additional levels show that when the high position of the father
results from a recent social ascension, i.e. ascension since the father’s
marriage (level 3) or from the position of the grandfather (level 4), the
reproduction of the father’s status by the married man is less strong. The
subtree that concerns the men whose father was dead, shows effects of
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the grandfather’s status very similar to those of the status of the father when
he is alive at the marriage.

3.2.2. Goodness-of-Fit of the Descriptive Tree

Classically, the quality of a tree is evaluated in terms of its classification
predictive quality, which is measured by the correct classification rate of the
tree. Recall that the classification is done by assigning to each case the most
frequent value in its leaf. For our tree, the correct classification rate is 57.6%.
This corresponds to a 42.4% error rate. At the root node, before introducing
any predictor, the correct classification rate is 44.4%, which gives an error
rate of 55.6%. Our tree allows thus a 24% ( ¼ (55.6-42.4)/55.6) reduction of
the error rate. These figures are, nevertheless, irrelevant in our case, since we
are not using the tree for classification purposes. We do not consider the
classification results. The descriptive knowledge considered follows directly
from the distributions inside the nodes. Hence, we consider the tree as a
probability tree rather than a classification tree. In Ritschard and Zighed
(2003), we have proposed indicators that better suit this descriptive point of
view. We can, for instance, measure with a likelihood-ratio w2 (G2) the di-
vergence between the distributions predicted by the tree (those in the leaves)
and those of the finest partition that our four predictors may generate.9 We
get 312.5 for 300 degrees of freedom, and its p-value is 29.8% indicating
apparently a good fit. Note that though the four predictors define theoret-
ically 576 different profiles, only the 163 actually observed are taken into
account. When these profiles are cross tabulated with the three statuses, we
get 489 cells. For 572 data, this gives an average of a bit more than one per
cell, which is insufficient to ensure the w2 distribution of G2. Hence, we
should not attach here too much confidence to the p-value (Table 6).

For comparison purposes, Table 6 reports the G2 statistic for a set of
nested trees, namely the independence tree corresponding to the root node
only, the tree expanded respectively one level only, two levels and three
levels, the fitted tree and the saturated tree that generates the finest partition.
Beside G2, its degrees of freedom and significance level, the table shows the
BIC and AIC information criteria and the adjusted pseudo R2. The latter
measures the percentage of reduction of the G2=df ratio as compared with
the independence tree. The BIC and the AIC are G2’s penalized for the
complexity.

We see that with less than three levels there is a lack of fit, the divergence
with the finest partition being significant at the 5% level. The difference in
G2s between two nested trees can also be compared with a w2 distribution
with degrees of freedom being the difference in these degrees for the two



Table 6. Goodness-of-Fit of the Tree and Subtrees.

Tree G2 Df sig BIC AIC Pseudo R2

Independent 482.3 324 0.000 2319.6 812.3 0

Level 1 408.2 318 0.000 1493.9 750.2 0.14

Level 2 356.0 310 0.037 1492.5 714.0 0.23

Level 3 327.6 304 0.168 1502.2 697.6 0.28

Fitted 312.5 300 0.298 1512.5 690.5 0.30

Saturated 0 0 1 3104.7 978.0 1
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models. Thus, the Level 3 tree differs by DG2 ¼ 15:1 and Ddf ¼ 4 from the
fitted model, which is clearly significant. Hence, the two splits leading to
Level 4 look jointly statistically significant. From the BIC point of view, the
Level 2 tree provides the best compromise between fit and complexity. Level
3 or 4 trees seem, however, preferable according to the interesting insight
brought by the additional levels and the significant divergence of Level 2
with the saturated model. The AIC, which is known, however, to under-
estimate the impact of complexity, selects here the fitted tree.

Trees look really promising thanks mainly to their ease of use and to their
visual outcome. When it comes to interpretation, one should be aware,
nevertheless, that trees may be instable in the sense that small changes in the
data could alter the structure especially splits and variables selected at
higher levels. It is then important to avoid growing too complex trees. Re-
laying on BIC or AIC criteria should help determining a somewhat robust
tree. Splits behind the optimal BIC or AIC will be less reliable and their
interpretation then requires more caution.
4. CONCLUSION

This paper stressed the scope and limits of various methods available for
analyzing life course data globally, and especially in demography. Demo-
graphers and historical demographers invented their own longitudinal-
analytical tools like the life tables or the family reconstitution, almost since
the birth of their discipline. However, everywhere but probably more in the
French-speaking areas, those sciences of the masses hesitated to take a step
further, while they were so close from the life course perspective and meth-
ods. Many academics are still living this transitiony. For adepts of highly
quantitative social sciences, we wanted to both introduce and illustrate
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promising methodological perspectives without hiding the complexity of the
new approaches. At the same time, we did not elaborate this contribution
only for our disciplinary fellows, since one of the most important evolutions
is that the analytical techniques obviously lend us to neighboring disciplines
that share the same tools and explore similar concepts, giving to the inter-
disciplinary ambition a growing substance.

We have chosen to illustrate different approaches, and especially the
emerging data-mining techniques that should be able to provide original
additional insights on results provided by more classical statistical methods.
The discussion, however, is by no means exhaustive. Among the techni-
ques we did not discuss, optimal matching (Abbot & Forrest, 1986; Malo
& Munoz, 2003) deserves special attention. Optimal matching is, like
Markovian models, a state-sequence analysis tool. It is merely a data-mining
approach, since it proceeds heuristically. Unlike the mining of frequent se-
quences that does not care about the similarity between sequences, optimal
matching is concerned with the discovering of similarities between sequence
patterns. Optimal matching evaluates the proximity between two sequences
by seeking the minimal number of changes that can transform a sequence a
into a sequence b. Survival (Ciampi et al., 1988; Segal, 1988) and risk trees
(Leblanc & Crowley, 1992) developed in the field of biomedicine during the
first half of the 1990s would also merit further attention from historians and
demographers.

It is worth mentioning that the statistical and data-mining approaches are
not substitutes for one another. They are complementary, each method
bringing its own insight. The choice of a method will be dictated by the kind
of data available: spell durations, event sequences, state sequences, and
indeed the type of results expected: knowledge about probability of tran-
sitions, effects on these risks, characteristic trajectories, or life sequences.
Another important element for this choice, at least for the end user, is the
availability of user-friendly softwares and the level of expertise required to
run the method and interpret the results. Many softwares propose duration
or hazard models and/or classification trees. It is less obvious to find friendly
tools for Markovian models and the mining of sequential rules. March 2 is a
promising solution for Markovian models, while specialized softwares like
Clementine propose sequence mining tools (see http://www.kdnuggets.com
for a list of commercial and free data mining softwares). The use and in-
terpretation of hazard models is very similar to that of other regression-like
models, which renders them attractive. The interpretation of induction trees
is also very straightforward and looks therefore as a promising tool. Nev-
ertheless, the fine tuning of trees, which may be highly instable, requires
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generally more care than hazard models. Mining frequent sequential pat-
terns also requires some experience to get interesting patterns. In any case,
the new highlights provided by these data-mining approaches are worth the
effort.

NOTES

1. Random effect models are also known as multilevel, hierarchical or mixed-
effect models.
2. GLM models (McCullagh & Nelder, 1989) cover a large number of parametric

models. They assume a distribution of the natural exponential family for the de-
pendent variable and are, in their simpler form, simply characterized by a link
function that describes how the mean of the dependent variable is linked to the linear
form of the explanatory variables. For example, we get the classical linear model
with a Gaussian distribution and the identity link, the logistic model with a Bernoulli
distribution and the logit link, and the log-linear model with a Poisson distribution
and the log link.
3. The estimations were obtained with S-plus 6.2. We suspect a bug in Stata 8 that

was not able to converge within 24 h for the frailty model while S-Plus provided the
results within 2 min.
Formally, the estimated hazard model is h(t, x1,y, xp) ¼ ng h0(t) exp(b1x1+

y+bpxp), where h0(t) is the baseline hazard function and ng the shared frailty term.
We estimated this model assuming a gamma g(1/y,1/y) distribution for the frailty
term ng, for which we have E(ng) ¼ 1 and Var(ng) ¼ y.
4. http://popindex.princeton.edu/
5. The deviance -2LogLik may be seen as the distance between the predictions

generated by the model and the observed counts. Hence it is a measure of global fit.
However, it cannot be used here to test the fit since we do not know its distribution.
6. The AIC and BIC criteria are penalized forms of the –2LogLik that take ac-

count of the complexity, i.e. the number of estimated parameters. Among the two,
the BIC is usually preferred since the AIC is known to insufficiently penalize com-
plexity. The model with the minimal BIC offers the best compromise between fit and
complexity.
7. Significance is generally evaluated with a Bonferroni correction for taking ac-

count of the multiple test sequence that controls each split decision.
8. CART maximizes the reduction in the Gini index also known as the quadratic

entropy. It generates only successive binary splits. C4.5 uses the gain ratio defined as
the reduction in Shannon’s entropy normalized by the entropy of the distribution
among the classes of the generated partition. Unlike the CHAID method, for which
the significance of the w2 provides a natural validation for the split, CART and C4.5
do not have such a natural split validation criteria. These methods complete there-
fore the growing process with a post pruning round that, starting from the leaves,
eliminates unreliable splits. Only splits that improve the predictive error rate are
retained. There are also graph induction tools like SIPINA (Zighed & Rakotomalala,
1996), which generalize trees by allowing the merge of nodes with similar inside
distribution.
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9. G2 is indeed the deviance -2LogLik. It measures how far the counts predicted by
the tree are from those observed for the finest possible partition. When the predicted
counts are not too small, it has an approximate w2 distribution and can be used for
testing the goodness-of-fit. Note that the w2 reported in Table 5 would correspond
here to the difference between the G2 of the tree and that of the root node (inde-
pendence). We expect w2 to be large while G2 should be small.
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Alter, G. (1998). L’event history analysis en démographie historique: Difficultés et perspectives.
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Courgeau, D., & Lelièvre, E. (1993). Event history analysis in demography. Oxford: Clarendon

Press.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society,

Series B, 34(2), 187–220.

Demeny, P., & McNicoll, G. (Eds) (2003). Encyclopedia of population (Vol. 2). New York:

McMillan.

De Rose, A., & Pallara, A. (1997). Survival trees: An alternative non-parametric multivariate

technique for life history analysis. European Journal of Population, 13, 223–241.
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Editions du Seuil.

Willekens, F. J. (1999). The life course: Models and analysis. In: L. J. G. van Wissen &

P. Dykstra (Eds), Population issues: An interdisciplinary focus (pp. 23–51). New York:

Plenum Press.

Yamaguchi, K. (1991). Event history analysis. ASRM 28, Newbury Park, London: Sage.

Zighed, D. A., & Rakotomalala, R. (1996). SIPINA-W(c) for Windows. User’s guide, Lab-

oratory ERIC – University of Lyon 2, Lyon.


	Life Course Data In Demography And Social Sciences: Statistical And Data-Mining Approaches
	From Demographic Analysis To life course Approach
	Statistical Modeling of Life Events
	Event History Regression Models
	Shared Heterogeneity and Multi-Level Modeling
	Illustration

	Markov Transition Models
	Illustration


	Mining Longitudinal life course Data
	Mining Event-Sequential Association Rules
	Illustration

	Social Transition Analysis with Induction Trees
	Knowledge Provided by the Tree
	Goodness-of-Fit of the Descriptive Tree


	Conclusion
	Notes
	References


