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THE FUNDAMENTALS OF MONOTONE PROCESSES 
REVIEWED THROUGH AN INEFFICIENCY MEASURE* 

GILBERT RITSCHARD 

I. INTRODUCTION 

The goal of any allocation mechanism is to improve the initial 
situation given by the endowments of the agents. For classical 
convex economies with price systems, the competitive process looks 
to be the best such mechanism. Indeed, from the New-Welfare 
Theorems of Arrow, Debreu, and Koopmans, we know that it 
achieves Pareto-efficient allocations. It is also well-known that the 
competitive mechanism is individually rational, i.e., the competi- 
tive equilibrium makes the position of each individual at least as 
good as his initial endowment (see, for instance, the nice book of 
Hildenbrand and Kirman [1976], where it is shown that the 
competitive equilibria belong to the core of the economy). Further- 
more, the competitive mechanism is uniquely informationally 
efficient [Mount and Reiter, 1979; Jordan, 1982] which means, in 
particular, that it requires a minimal message space. 

Despite all these nice properties of the competitive mecha- 
nism, other processes are of interest, especially for environments 
where the competitive allocation process does not work, or at least 
loses some of the above-mentioned properties. If we except the 
problems of nonconvexities due to indivisibilities, externalities, 
etc., these situations correspond mainly to the cases where there 
are no free prices (see, for instance, Chapter 7 in Balasko [1988]) or 
no prices at all. Think of planned economies, or of economies with 
public goods. 

As far as decentralized processes are concerned, the agents 
must indeed get some information from the market, but the 
absence of a free price system here prevents the use of price signals. 
The messages sent to the agents must be of some other type and 
will generally take the form of quantity signals. Thus, the alloca- 
tion mechanism without prices is commonly viewed as a system in 
which some central board proposes successively feasible allocations 
to the agents until an equilibrium is reached. At each step the 
propositions are naturally revised according to the agents' reac- 
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tion. In the well-known MDP [Malinvaud, 1970; Dreze and de la 
Vallee Poussin, 1971] process, for instance, the agents transmit to 
the central board their marginal rates of substitution evaluated at 
the proposed allocation. 

Now, if we accept the idea that each agent is free to reject a 
proposed allocation, we can reasonably consider that he will do so 
for any proposition that makes him worse off compared with the 
previous one. The allocation mechanism can then only generate 
sequences of allocations along which the satisfaction of every agent 
is increasing or, at least, not decreasing. In that sense, such 
allocation mechanisms are called monotone processes. 

Clearly, these processes based upon allocation signals are 
informationally much less efficient than mechanisms with price 
signals. Indeed, with m agents, the allocation space, i.e., the board's 
message space, has dimension (m - 1)1 as opposed to 1 - 1 for the 
price space. And this is without considering the agents' response 
space whose dimension, for instance, in the MDP process, equals 
m(l - 1), i.e., the dimension of the total message space of the 
competitive mechanism. What about other properties? 

The monotonicity requirement, which is expressed as an 
exchange axiom in Smale [1976], obviously implies the individual 
rationality of the mechanism. It is indeed a stronger property since 
it concerns every couple of successive allocation signals, while 
individual rationality expresses just the dominance of the final 
allocation over the initial endowments. It must be emphasized that 
the monotonicity property only makes sense for mechanisms that 
generate sequences of feasible allocations. This, for instance, is not 
the case of the competitive process. 

From the point of view of social welfare, the crucial question is 
that of the accessibility of Pareto optima. On this point, monotonic- 
ity, together with the usual convexity and smoothness assumptions 
on preferences, ensures important properties. Smale [1973], for 
instance, has first demonstrated the accessibility and the stability 
of Pareto optima (see also Cornet [1981]), while Schecter [1977], in 
a very arduous paper, has established the finite length of monotone 
exchange curves. 

The main goal of this note is to put forth the fundamentals of 
monotone processes. We therefore give a simplified and unified 
presentation of these results. For instance, we shall not consider 
Smale's problems of nonconvexities, nor shall we, contrary to 
Schecter, bother with the difficulties arising at the frontier of the 
commodity space. Our simplified setting consists then of a pure 
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exchange economy with the standard assumptions on preferences, 
and concerns only the interior behavior of continuous monotone 
processes. 

The unified, and as a consequence also simplified, aspect of the 
presentation results from an extensive use of an allocation ineffi- 
ciency measure which has first been introduced by Balasko [1982]. 
It is shown that the gradient of this measure defines a differen- 
tiable monotone process which establishes existence of such mech- 
anisms. This measure is then shown to be a Liapounov function for 
monotone processes from which convergence to and stability of 
Pareto optima follow directly. Then, and this is the main point of 
the note, the inefficiency measure suggests a suitable substitution 
of variable that facilitates the demonstration of the finite length of 
the exchange curves generated by monotone processes. 

Allocation mechanisms without prices are of special interest in 
planning problems involving production and public goods. In a 
concluding section, we then briefly explain how the approach 
followed in the paper easily extends to these cases. 

II. THE FORMAL SETTINGS 

We consider pure exchange economies with 1 commodities and 
m agents, but without price system. Let xi = (xi ,x2, ... , x ) denote a 
commodity bundle of agent i. The preferences of every agent i are 
then represented by a utility function uj:R' -- R; xi -- ui(xi), which 
is (1) differentiable up to any order; (2) differentiably increasing 
(i.e., aui(xi )/axd > 0 for everyj = 1,2, ... , 1); and (3) differentiably 
strictly quasi-concave, such that the set u-1([c,c]) is strictly convex 
for every real number c. 

Let r E RI be the vector of total resources that are assumed 
constant. Then, X = {x = (xl,x2, ... I Xm) E R m II xi = r) denotes 
the set of the feasible allocations. The set X is obviously a smooth 
manifold of dimension l(m - 1). The Pareto-efficient allocations in 
X, i.e., the allocations x EM X for which there is no x' E X such that 
ui(xi) < ui(x ) with at least one strict inequality for every i, form, in 
X, a submanifold of dimension m - 1. We denote this submanifold 
by P. 

An allocation process without prices is a smooth vector field 
p:X Rlm; x -- tp(x) = (p1(x),42(x), . . ., Pm(x)) with i pi(x) = 0. 
The vector tk(x) indeed gives the direction of the change in the 
proposed allocation that occurs at the point x. The condition 
i qpi(x) = 0 ensures at each step that the resulting proposal remains 
feasible and unwasteful with respect to total resources. 



1128 QUARTERLY JOURNAL OF ECONOMICS 

Let the map x:io) -* X; t -* x(t) be the solution of the system 
of differential equations: x'(t) = tI(x), when the initial condition is 
x(0) = W, with w E X standing for the vector of initial endowments. 
This curve can be thought of as resulting from a sequence of small 
trades. Thus, we call it an exchange or trade curve. 

A monotone process is a process 4 such that the satisfaction of 
every agent increases (one at least strictly) along every exchange 
curve. To put this formally, first note that, from the assumptions 
made on the utility functions ui, the satisfaction of consumer i 
increases strictly in the direction +(x) if and only if we have 
grad ui(xi) * pi(x) > 0. For grad ui(xi) Pij(x) = 0, strict quasi 
concavity implies a decrease in ui, unless Pip(x) is zero; i.e., unless 
agent i is not affected by the change in the allocation at x. Thus, a 
continuous allocation mechanism q is a monotone process if and 
only if at any point x of X the vector t(x) belongs to the set, 

C(x) = {Y = (Y1Y2, . . ,ym) E Rlm 

E Oi = O. grad ui(xi) * yi > 0 oryj = 0, each i}. 

It is readily shown [Smale, 1976] that C(x) is a (neither open 
nor closed) convex cone and that we have C(x) = {0} if and only if x 
is Pareto optimal. Assuming that some change occurs when x 
admits a Pareto superior allocation, i.e., +s(x) ? 0 if C(x) ? {0J, this 
last property implies that the equilibria of monotone processes are 
given by the set P of the Pareto optima. 

III. ALLOCATION INEFFICIENCY AND THE ASYMPTOTIC BEHAVIOR OF 

MONOTONE PROCESSES 

The new approach followed in this note for studying the 
dynamics of monotone processes is based upon Balasko's [1982] 
inefficiency measure. In this section we first introduce the measure 
and its properties. We then give the direct consequences of these 
properties, namely, the existence of smooth monotone processes, 
convergence to Pareto optima, and the local asymptotic stability of 
these optima. 

Given a point x of X, we consider the set of the allocations that 
dominate it; i.e., that are Pareto superior to x: 

K(x) = |x = ... 
- 

Xm) E XI ui(Yi) ? uj(x ), = 1,2,. , m) 

Clearly, for quasi-concave utility functions, K(x) is a compact 
convex subset of X. We call it a lens because of its shape in the case 
of two goods and two agents. 
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Now, consider in X the Lebesgue measure of the lens K(x), i.e., 
its volume. This measure, denoted >L(x), can be thought of as the 
number of allocations Pareto superior to x. In that sense, it reflects 
the degree of inefficiency of the allocation x. 

Obviously, from the smoothness of the utility functions the 
inefficiency measure >:X > R+, is also smooth. Furthermore, we 
have 

LEMMA 1. Assume a pure exchange economy with preferences 
represented by smooth, strictly increasing and strictly quasi- 
concave utility functions uj. Then, the inefficiency measure 
>L(x) is such that 
(a) >L(x) = 0 if x is in P, and >L(x) > 0 otherwise; 
(b) for any exchange curve t -- x(t) of a monotone process, 
pL'(t) < 0 when x(t) is not in P; 
hence, since P is the set of equilibria of monotone processes, 
>L(x) is a Liapounov function for such processes; 
(c) the vector fields - grad >L(x) defines a smooth monotone 
process. 

Proof of Lemma 1. For point (a), first note that, for strictly 
quasi-concave uj's, a Pareto-efficient point x is the sole element of 
K(x). This implies that >L(x) = 0. The Lebesgue measure is by 
definition nonnegative. It then remains to show that >L(x) is 
nonzero outside the Pareto optima. For >L(x) to be nonzero, the lens 
K(x) has to be of dimension l(m - 1). This is the case if K(x) has a 
nonempty interior. Here, note that the interior of the set C(x) 
defined in Section II is the interior of the tangent cone of K(x) at x. 
We then can, since K(x) is compact and convex with our assump- 
tions, equivalently check that the interior of C(x) is not empty. This 
interior is given by the intersection of the open subspaces defined 
by the inequalities grad ui(xi) iy > 0. Now, this intersection is not 
empty if the 1 hyperplanes grad ui(xi) - yi = 0 are not confounded. 
This is the case if at least two gradient vectors grad ui are not 
collinear; i.e., if x is not in P. Part (a) is thus proved. 

Point (b) is quite obvious. Indeed, for x = x(t) and 4i being a 
monotone process, x'(t) = i(x(t)) lies in C(x) by definition. Like- 
wise, we have x'(t) ? 0 when x is a nonoptimal allocation. Then, 
moving from x into the direction x'(t) leads to a Pareto superior 
point x- ? x in K(x). Then we have K(x) C K(x) which implies that 
>(x-) < >L(x). Thus, p strictly decreases which proves part (b). 

Finally, let us turn to part (c). Since from the smoothness of 
the uj's [ is smooth, the function g:x -* -grad >L(x) is also smooth 
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on X. When >.(x) is not zero, i.e., from (a), outside P, it is always 
possible to move somewhere inside K(x) and so reduce [.(x). Thus, 
-grad [L(x) has to be nonzero when x is not Pareto optimal. It then 
remains to show that - grad [L(x) belongs to the cone C(x) for any x 
in X. Let g(x) = (g1(xl), g2(x2),. .. , g9,(x,,)) denote the vector 
-grad >.(x). Clearly, we have lgi(xi) = 0. Furthermore, if gi(xi) is 
not zero, then -grad ui(xi) * gi(xi) is strictly positive. Otherwise, 
indeed, a displacement in the direction -grad >.(x) would lead to a 
lower indifference surface for agent i, which is contradictory with 
the maximal decrease in >L(x). Thus, g(x) lies in C(x), and (c) is 
proved. 

Q.E.D. 

It follows from properties (a) and (b) that the inefficiency 
measure [ is a Liapounov function for monotone processes. The 
characterization of the Liapounov function used here, however, 
differs somewhat from the usual one. Indeed, we have adapted the 
definition for the case of a continuum of equilibria that we have to 
deal with. One has then to be warned about a direct application of 
Liapounov's stability theorem as stated in Hirsch and Smale [1974, 
p. 193]. In our case the Liapounov function does not ensure the 
stability of an equilibrium x in P. It implies the stability of the 
connected subset P of X in the sense that, for each neighborhood V 
of P in X, there is a neighborhood U of P in X such that every 
trajectory starting in U remains in V. 

Along the same way, we have to make precise the notion of 
asymptotic stability for the case of a continuum of equilibria. 
Indeed, the usual definitions, like the one given in Hirsch and 
Smale [1974, p. 186], also implicitly assume isolated equilibria. The 
natural extension [Smale, 1973] is 

DEFINITION. Let P be a continuum of equilibria. Then x E P is 
locally asymptotically stable if P is stable (in the sense stated 
above) and if for every neighborhood V of x in P there is a 
neighborhood U of x in X such that every solution x(t) with x(0) 
in U is defined and converges to an equilibrium in V. 

In other words, this means that any solution curve that starts 
near an equilibrium x E P converges to an equilibrium close to x. 

We can now state the properties of monotone processes that 
are direct consequences of Lemma 1. 
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THEOREM 2. Assume a pure exchange economy with preferences 
represented by smooth, strictly increasing, and strictly quasi- 
concave utility functions ui. Then, 
(a) smooth monotone processes exist; 
(b) let x: [oo) X, t -> x(t) be a monotone exchange curve 
starting at x(O) = ( E X; then, limtax(t) exists and is a Pareto 
optimum; 
(c) the Pareto-optimal allocations are locally asymptotically 
stable for monotone processes. 

Proof of Theorem 2. Property (a) results from the existence of 
the inefficiency measure [ and from Lemma 1 (c). 

From Lemma 1 (b) we have iu/(t) < 0, for x i P. Thus, as t -- 
00, the function ji converges to its absolute minimum which is zero, 
i.e., limtOp(x(t)) = 0. But this limit is equal to [L(limtOx(t)) which 
implies that limt,,x(t) exists. Furthermore, it equals zero if and 
only if limtxx(t) is Pareto optimal. This ends the proof of part (b). 

The stability of P follows from the existence of the Liapounov 
function ,u. Next, consider a neighborhood V of an efficient 
allocation in P. Let U be any lens K(x) such that K(x) n P is a 
subset of V. Since any monotone exchange curve starting in K(x) 
lies in K(x), and converges to a point of P, it converges to an 
equilibrium in P f U C V. Part (c) is thus proved. 

Q.E.D. 

IV. FINITE LENGTH OF THE EXCHANGE CURVES 

We have now established that monotone processes always lead 
to Pareto optima and that these optima are locally asymptotically 
stable. For the achievement of optima to be interesting from the 
economic point of view, it has to be realizable into a finite lapse of 
time. Mathematically, this property of finite time corresponds to 
the finite length of the trajectories that lead from any allocation x 
in X to Pareto optima. The following theorem is then essential to 
give economic significance to the results of the preceding section. 

THEOREM 3. Assume a pure exchange economy with preferences 
represented by smooth, strictly increasing and strictly quasi- 
concave utility functions ui. Then, a monotone exchange curve 
[0,00) -* X, t - x(t), with x(O) = w, has finite length for any w E 

X. 
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Proof of Theorem 3. The length of the exchange curve is given 
by 

length x([,oo)) = Jo 1 '(t)jldt, 

where 11-11 denotes the usual Euclidean norm. One has then to show 
that this integral is definite. We proceed (see Schecter [1977] for an 
alternative proof) through a parameterization of the length of the 
path x([O,T]) by the inefficiency measure of x(T ), i.e. the Lebesgue 
measure ,ut of the lens K(x(T )). Let s : [O,o) -> R, R --> s(L), be this 
parameterization. This function can be thought of as the geometri- 
cal relationship between the path x[0,T]) and the volume reduction 
[Lo - [L of the lens, where [Lo = ,(x(O)). Economically, it can be 
interpreted as giving the time needed to reach an allocation of 
inefficiency p. < pRo. 

Clearly, the function s is smooth on (0,oo), since x(-) and p.(-) are 
themselves smooth. Furthermore, s is strictly decreasing. 

The length of the exchange curve x([O,oo)) is s(O). Thus, the 
theorem will be proved if we establish that 

SO = 
limfr 0 s(R)IdR<+ . s()=M-+0 M p)p 

This is done by showing that there exists a strictly positive e 
such that 

(a) Is'(p.) < k, if p. > E, 

(b) Is'(p)j < cp-0, with 0 < a < 1, if p < , 

where c and k are finite positive constants. 
Point (a) is true for every > 0 since the map s is smooth on 

(0,). 
For point (b), note first that s '(p.) = s '(t) /p'(t), where s '(t) = 

11 (x(t)) 11 and p.' (t) are the derivatives of s and p. with respect to the 
time t. Now, we have 

(1) Ip.'(t)L = -grad p.(x(t)) - (x(t)) 

= cos 0(t) * 1grad p.(x(t))jj * s(, 

where 0(t) is the angle between -grad p(x(t)) and 4(x(t)). From 
Lemma 1, I RV(t) is strictly positive if x(t) is not Pareto efficient 
which implies that cos 0(t) is strictly positive. Let Om., denote the 
maximum of 0(t) on the portion of the exchange curve defined by 
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p. < e and Ilx(t) - lim x(t) 11 > 0. From the strict quasi concavity of 
the utility functions ui, cos Om.} is strictly positive. Since both 
grad >(x) and q1(x) equal zero for x Pareto efficient, we have 

I [L'(t) I > cos Om., -1grad (x(t))II - s '(t) 

and then 

(2) s (i |= < (cos Oma Ilgrad p(x(t))jj)-1. 

To establish point (b), we have then to study the relationship 
between 11grad [uII and p. in the neighborhood of the optimum x = 

limtO x(t). Since I is Pareto efficient (Theorem 2), we know, from 
Lemma 1, that >(x) = 0 and grad >.(x) = 0. Thus, in a neighborhood 
of x, a Taylor-Young expansion, respectively, to the second order 
for [.(x) and to the first order for grad V.(x), gives 

.(x) = I t(x - x)H(x -x) 

grad [.(x) = H(x - x), 

where H is the Hessian matrix of p. at x; i.e., 

H = (axjj (x) ij = 1,2 . . ., im. 

H is symmetrical. Furthermore, it is positive definite since p. 
reaches a minimum at x. Thus, there exists an orthogonal matrix C 
such that H = C AtC, where A is the diagonal matrix of the 
(nonnegative) eigenvalues Xi, i = 1,2,.. ., 1m of H. Let z = 

(Z1,Z2, , Zim) denote the vector tC(x - x). Then 

1 =1 XZ 
[ 

- - N- tz2 p.(x) =2 2 

and 

11grad R.1 = (tzA2z)1/2 = (xz)i 12. 

Since P is a submanifold of dimension m - 1 in X C Rim and 
grad p(x) is nonzero for x t P, H has some strictly positive 
eigenvalues. Let Xmin be the smallest such nonzero eigenvalue. 
Then we have i X2z2> X min E Xiz2 = Xmin2p and in a neighborhood 
of p = 0: 

||grad Lu| > (2Xmin)ILm 
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Together with the inequality (2) this gives 

|Is (u c l-2, with c = (cos Omax - 
(2Xmin)112)Y-1. 

The angle Omax being strictly less that T/2 and Xmin being 
different from zero, the constant c is finite and positive. Point (b) is 
thus proved. 

Finally, we then have 

S(0) < C Vf -?112d + k dg. 

Clearly, the integrals in the right-hand side are definite, and so 
is s(O). This completes the proof of Theorem 3. 

Q.E.D. 

Remark. Theorem 3 ensures that wherever a monotone ex- 
change curve starts, it converges in finite time to a Pareto 
optimum. It says nothing more, however, about the speed of 
convergence. From the equations (1) and (2) in the proof, we see 
that the length of the exchange path does not depend upon the 
length of the vectors q}(x). It is only determined by the angles 0(t) 
and by the length of the gradients of the inefficiency measure along 
the path. Thus, the shortest exchange path will be obtained when 
(i) the norms IIgrad 1i(x(t))II are large and (ii) the vectors 4(x) are 
close to the gradients grad ,u(x) so as to render the angles 0(t) small. 
This last condition then suggests that the process -grad [L should 
be among the more efficient ones. 

V. ECONOMIES WITH PRODUCTION AND PUBLIC GOODS 

Until now, we have considered monotone processes in pure 
exchange economies only. Note, however, that the results can be 
extended to economies with production and public goods without 
great difficulties. We give just a few indications about it. 

First, we characterize an economy with public goods and 
production. We consider h public goods. Let xp, xi E Rl+h denote a 
commodity bundle of consumer i. The amounts xp of public goods in 
these bundles must be the same for each consumer i. The 
preferences are then represented by utility function ui:Rl+h R. 
(Xp,Xi) -' ui (xp,xi). We still assume that the functions ui are smooth, 
differentiably increasing in each argument and strictly quasi 
concave. Concerning production, we consider n firms. Let yj E R' 
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denote the net output of private goods of firm j and yjp E Rh its 
output of public goods. The efficient production set is defined by n 
implicit functions fj(yjp - xpyj) = 0, j = 1,2,... , n, where the 
functions fj:R +h- R, are smooth, nondecreasing in all the 
arguments and strictly convex. 

Let 

z = (xy ,xy) &R(1+n)h+(m+n)l, withyp 
= (ylp ,. * *, Yp) and y = (Y1 ,Y2 *. * * Yn) 

denote a program in that economy. For resources rp E Rh in public 
goods and r E R' in private goods the set of feasible programs is 

Z =z Ez& R(l+n)h+(m+n)l Ixp = yp+ rp, 
Exi = I yi + r,fj (yjp - xp,yj) = O. j = 1,2, ... ., n}. 

Clearly, Z is a smooth manifold of dimension nh + (m + n - 
1)1 - n. The study of monotone processes for economies with 
public goods and production as just described requires that the set 
Z be considered instead of the allocation set Z. Furthermore, the 
lenses to be considered are 

K(z) = (z = (xpyp ,x,) E& 

ui (xp,xi ) > ui (xp ,xi ), each i = L1,2 . .. , ml. 

Monotone processes are then defined by smooth vector fields 
4i:Z -* R(n+l)h+(n+m)l; z -*4(z), such that 4v(z) belongs to the set: 

C(Z) = {W = (Vp,V1, . . . , Vn,Wl, . .. Wm+n) E R(1+n)h+(m+n)lI 

Vi&Rhwe R',VP + Yvi = O,YIWi = ?, 

grad ui(xp,xi) - (vpwi) > 0 or (vpwi) = 0, 

each i = 1,2, ...,m|. 

Now, to extend the approach followed in this paper, it remains 
to define the appropriate inefficiency measure. Consider the natu- 
ral projection -rR(1+ n)h+(m+n)l > Rh-ml; z = (x ,y ,xgy) -> (x ,x). 
Clearly, rr(K(z)) is a compact subset of 'r(Z). A legitimate ineffi- 
ciency measure of a program z is then given by the Lebesgue 
measure pu of 7r(K(z)) as a subset of 7r(Z). In the same way we 
define Pl, as the natural projection of the set of Pareto optima with 
production. For establishing the properties of monotone processes, 
one then checks that the map ,u : z --> iu(z) has the same properties 



1136 QUARTERLY JOURNAL OF ECONOMICS 

with respect to P, as the map p. has with regard to P. Similar 
demonstrations as those given in this note then follow. 

UNIVERSITY OF GENEVA 
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