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Abstract. Many algorithms of machine learning use an entropy mea-
sure as optimization criterion. Among the widely used entropy measures,
Shannon’s is one of the most popular. In some real world applications,
the use of such entropy measures without precautions, could lead to in-
consistent results. Indeed, the measures of entropy are built upon some
assumptions which are not fulfilled in many real cases. For instance,
in supervised learning such as decision trees, the classification cost of
the classes is not explicitly taken into account in the tree growing pro-
cess. Thus, the misclassification costs are assumed to be the same for all
classes. In the case where those costs are not equal on all classes, the
maximum of entropy must be elsewhere than on the uniform probability
distribution. Also, when the classes don’t have the same a priori distri-
bution of probability, the worst case (maximum of the entropy) must
be elsewhere than on the uniform distribution. In this paper, starting
from real world problems, we will show that classical entropy measures
are not suitable for building a predictive model. Then, we examine the
main axioms that define an entropy and discuss their inadequacy in ma-
chine learning. This we lead us to propose a new entropy measure that
possesses more suitable proprieties. After what, we carry out some eval-
uations on data sets that illustrate the performance of the new measure
of entropy.

1 Introduction

In machine learning, more specifically in supervised learning, algorithms such
as association rules, decision trees,... use plenty of criteria, and among them
are measures of entropy. Unfortunately, when the entropy criteria are used, it is
done without taking into account the assumptions upon which they are founded.
Indeed, many assumptions required for such usage are not satisfied in real ap-
plications. The entropy criteria would be suitable if, in one hand, the classes
were balanced, i.e. they had, almost, the same a priori probability and, on the
other hand, the misclassification costs were equal for all the classes. Entropy
measures are also based on an axiomatic that supposes the probabilities of the
classes could be calculated at any time, which is not always possible because of



the finite size of the learning sample. Let us describe some situations for whom
the main assumptions are not taken into consideration:

– Hypothesis of distribution of classes a priori uniform : This hypoth-
esis is not valid in real world applications. We can observe this when the
classes are unbalanced. In such case, the distribution of the modalities of
the class variable is far away from the uniform distribution. If the sampling
process does not suffer from any bias, i.e. the sample conforms to the reality,
then we may conclude that the a priori distribution of the classes is not uni-
form. This happens in a lot of real world applications: in the medical field,
to predict a rare illness; in the industry to predict a device failure; or in the
banking field, to predict insolvent customers or frauds in transactions. In
these cases, there is one rare state of the class variable (ill, breakdown, insol-
vent, fraud) with less cases in comparison to the whole population. Standard
methods do not take such specificities into account and just optimize a global
criterion with the consequence that all the examples would be classified into
the majority class, i.e. which minimizes the global error rate on the learning
set. This kind of prediction models is useless because it does not carry any
information. In decision trees, this problem appears at two levels: during the
generation of the tree with the splitting criterion, and during the prediction
with the assignment rule of a class in each leaf. Indeed, in decision tree for
instance, to choose the best feature and the best split point to create a new
partition, classical algorithms use an entropy measure, like the Shannon en-
tropy [1] and [2] or quadratic entropy [3]. Entropy measures evaluate the
quantity of information about the outcome provided by the distribution of
the class variable. They consider the uniform distribution, i.e for which we
have the same number of cases in each class, as the most entropic situation.
So the worst situation according to these measures is the balanced distribu-
tion. However, if in the real world for example a priori 1% of the people are
sick, ending with a leaf in which 50% of the members are sick would be very
instructive and would carry a lot of information for the user. Thus, using a
classical entropy measure precludes obtaining such branches and hence the
relevant associated rules for predicting the rare class. The second impor-
tant aspect of decision trees is the assignment rule. Once the decision tree
is grown, each branch defines the condition of a rule. The conclusion of the
rule depends on the distribution of the leaf. Classical algorithms conclude
to the majority class, i.e the most frequent modality in the leaf. But this is
not efficient: In the previous example where 1% of the people are sick, a rule
leading to a leaf with a frequency of the ‘sick’ class of 30% would conclude to
‘not sick’. According to the importance of predicting correctly the minority
class, it may be better however in that case to conclude to ’sick’. This will
lead to a higher total number of errors, but a lower number of errors on the
rare class and hence a better model.

– Hypothesis of equal misclassification costs : Overall, the supervised
learning algorithms assume that the misclassification costs are equal for all
the classes, thus the cost is constant and fixed. If we denote by cij the cost of



the classification of an individual issued from the class i to the class j then,
we have :
1. a symmetrical misclassification cost : cij = cji = c for all (i, j); i 6= j
2. the cost of a good classification cii = 0 for all classes

But, in many real world applications, this hypothesis is not true. For in-
stance, in cancer diagnosis, missing a cancer could lead to death whereas the
consequence of misleading to a cancer are less important even if they are
costly.

– Hypothesis of non sensitivity to the sample size : the entropy measures
are all non sensitive to the sample size. They depend only on the distribution
of the classes. For instance, in decision trees, if we consider two leaves, with
the same distribution of the classes, the values of the entropy associated to
each node are equal even if one node has many more individuals and that
this fact could be considered as giving a more accurate decision rule.

Plenty of works have been done to address issues brought about by the above
assumptions. We may cite [4], [5], [6], [7], [8], [9], [10], [11], [12]. All these works
have dealt with only one issue at a time. In section 2 we introduce some notations
and definitions. We will focus on the axiomatic of the entropy such it has been
defined, at the beginning, outside of the area of machine learning and then we
will present some measures of entropy. In section 3 we introduce our design for a
new entropy measure that fulfill a set of requirements. In section 4 we proposes
an evaluation based on some experiments on data set whose some are drawn
from real world applications. And then, in section 5, we conclude.

2 Notations and basic definition

For the sake of clarity of the presentation, our frame work is that of decision
trees. Nevertheless, our proposal may be extended to any other machine learning
algorithms that use entropy measure as criterion.

2.1 Notations and basic concepts

We denote Ω the population concerned by the learning problem. The profile
of any example ω in Ω is described by p explicative or exogenous features
X1, . . . , Xp. Those features may be qualitative or quantitative ones. We also
consider a variable C to be predicted called either endogenous, class or response
variable. The values taken by this variable within the population are discrete and
form a finite set C. Letting mj be the number of different values taken by Xj

and n the number of modalities of C, we have C = {c1, . . . , cn}. And when it is
not ambiguous, we denote the class ci simply by i. Algorithms of tree induction
generate a model φ(X1, . . . , Xp) for the prediction of C represented by a deci-
sion tree [13, 14] or an induction graph [12]. Each branch of the tree represents
a rule. The set of these rules is the prediction model that permits to determine
the predicted value of the endogenous variable for any new example for which



we only know the exogenous features. The development of the tree is made as
follows: The learning set Ωa is iteratively segmented, each time on one of the
exogenous features Xj ; j = 1, ...p so as to get the partition with the smallest
entropy for the distribution of C. The nodes obtained at each iteration define
a partition on Ωa. Each node s of a partition S is described by a probability
distribution of the modalities of the endogenous features C: p(i/s); i = 1, . . . , n.
Finally, these methods generate decision rules in the form If condition then
Conclusion. Splitting criteria are often based on entropies.

2.2 Entropy measures

The concept of entropy has been introduced by Hartley [15] but was really
developed and used in the industrial context by Shannon and Weaver [2, 1] in
the forties. They proposed a measure of information which is the general entropy
of a distribution of probabilities. Following the theorem that defines the entropy,
many researchers such as Hencin [16] and later, Forte [17], Aczel and Daroczy
[18] have proposed an axiomatic approach for the entropies.

Shannon’s entropy Let E be an experience with the possible events e1, e2, . . . , en

of respective probabilities p1, p2, . . . , pn. We suppose that
∑n

i pi = 1 et pi ≥ 0
for i = 1, . . . , n. The entropy of Shannon of the probabilities distribution is given
by the following formula :

Hn(p1, p2, . . . , pn) = −
n∑

i=1

pi log2 pi (1)

By continuity, we set 0 log2 0 = 0.

Entropy on a partition The entropy H on the partition S to minimize is gen-
erally a mean entropy such that H(S) =

∑
s∈S p(s)h(p(1|s), . . . , p(i|s), . . . , p(n|s))

where p(s) is the proportion of cases in the node s and h(p(1|s), . . . , p(n|s)) an
entropy function such as Shannon’s entropy for instance Hn(p1, p2, . . . , pn) =
−

∑n
i=1 pi log2 pi ..

There are other entropy measures [19] [3] such as the quadratic entropy
Hn(p1, p2, . . . , pn) =

∑n
i=1 pi(1 − pi) for instance. The Figure 1 depicts the

quadratic and Shannon entropies for 2 classes. All the pictures of entropy mea-
sures have the same shape.

Properties of the entropy measures Let’s suppose that (p1, p2, . . . , pn) for
n ≥ 2 are taken in a finite set of distributions of probabilities and let’s consider
the simplex of order n

Γn = {(p1, p2, . . . , pn) :
n∑
i

pi = 1; pi ≥ 0} (2)
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Fig. 1. Shannon and Quadratic entropies for a 2 classes problem

A measure of entropy is defined as follow :

h : Γn → R (3)

with the following properties :

Non negativity
h(p1, p2, . . . , pn) ≥ 0 (4)

Symmetry The entropy is non sensitive to any permutation within the vector
(p1, . . . , pn) de Γn.

h(p1, p2, . . . , pn) = h(pσ(1) , pσ(2) , . . . , pσ(n)) (5)

where σ is any permutation on (p1, p2, . . . , pn).
Minimality If exists k such that pk = 1 and that pi = 0 for all i 6= k then

h(p1, p2, . . . , pn) = 0 (6)

Maximality

h(p1, p2, . . . , pn) ≤ h(
1
n

,
1
n

, . . . ,
1
n

) (7)

Strict concavity The function h(p1, p2, . . . , pn) is strictly concave.



3 Asymmetric and sample size sensitive entropy

3.1 Asymmetric criteria

The properties of classical entropy measures such as those cited above (Shannon,
quadratic) are not suited to inductive learning for many reasons [12]:

– First, the uniform distribution is not necessarily the most uncertain.
– Second, the computation of the entropy being based on estimates of the prob-

abilities, it should account for the precision of those estimates, i.e. account
for the sample size.

That is why we proposed in [12] a new axiomatic leading to a new family of
more general measures. They make it possible for the user to define a reference
distribution that is viewed as of maximal entropy. It permits also to make the
entropy measure sensitive to the sample size.

We recall below the new axiomatic that take into account the limitations we
have identified.

3.2 Properties requested for the new entropy measure

Let h̄ be the new function of entropy that we want to build. We want it to be
empirical, i.e. frequency dependent f(i/.), sensitive to the sample size N and
parametrized by a distribution of frequencies W = (w1, . . . , wj , . . . , wp) which is
considered as the less desired, i.e. where the entropy must be maximal.

h̄ : N∗ × Γ 2
n → R+ (8)

For a fixed distribution W , that we explain later on how it is set up,the
function h̄W (N, f1, . . . , fi, . . . , fn) must have the following properties :

P1: Non negativity The function h̄ must be non negative

h̄W (N, f1, . . . , fj , . . . , fn) ≥ 0 (9)

P2: Maximality let W = (w1, w2, . . . , wn) be a distribution fixed by the user
as the less desired and therefore of maximal entropy value. Thus, for a given
N ,

h̄W (N, f1, . . . , fn) ≤ h̄W (N,w1, . . . , wn) (10)

for all distribution (f1, . . . , fn) brought from a sample of size N .
P3: Asymmetry The new property of maximality, challenges the axiom of

symmetry required by the classical entropies. Therefore, some permutations
σ could affect the value of the entropy : h̄(f1, . . . , fn) 6= h̄(fσ1 , . . . , fσn).
We can easily identify the conditions in which the property of symmetry
would be kept. For instance in the case where wi would be equal, i.e. in the
case of uniform distribution.



P4: Minimality In the context of classical entropy, the value of the entropy
is null when the distribution of the sample over the classes is concentrated
in one class, in other word, it exists j such that pj = 1 and that pi = 0 for
all i 6= j. This property must remain theoretically valid. However, in real
world problems of supervised learning these probabilities are unknown and
must be estimated.
It would still be embarrassing to say that the entropy is null when the dis-
tribution is concentrated in one specific class. We have to take into consid-
eration the size of the sample on which the probabilities pj are estimated.
So, We merely require that the entropy of an empirical distribution for which
it exists j such that fj = 1, to tend to zero when N becomes big :

lim
N→∞

h̄W (N, 0, . . . , 0, 1, 0 . . . , 0) = 0 (11)

P5: Consistency For a given W and a constant distribution, the entropy must
be smaller when the size of the sample is bigger.

h̄W (N + 1, f1, . . . , fj , . . . , fn) ≤ h̄W (N, f1, . . . , fj , . . . , fn) (12)

3.3 Proposition for an asymmetric and sample-size sensitive
entropy

How to estimate the probabilities Instead of using classical frequency esti-
mates, we carry out the estimates by mean of Laplace estimator which is given
by λi = Nfi+1

N+n

How to fix the “worst” distribution W An important issue with asymmet-
ric criterion is how can we determine the “most” uncertain reference distribution
W? When the probability of each class is known, it is consistent to use these a
priori probabilities of the classes. Otherwise, we could estimate them from the
overall class frequencies in the learning dataset.

Asymmetric and sensitive entropy Let W = (w1, w2, . . . , wn) be the worst
distribution, that has the maximal entropy value. The probabilities of the classes
are estimated, locally, at each iteration of the growing process of the tree, by the
Laplace estimator. The asymmetric entropy we propose is defined as follow :

Theorem

hW (N, f1, f2, . . . , fn) =
n∑

i=1

λi(1− λi)
(−2wi + 1)λi + wi2

is an entropy measure that verifies the five properties cited above.
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Fig. 2. Asymmetric and sample size sensitive entropy for 2 classes

For the 2 classes problem, the Figure 2 shows the behavior of this function
according to the parameters W and the size of the sample on which the proba-
bilities are estimated.

An other non-centered entropy has been proposed in [20]. It results from
a different approach that transforms the frequencies pi’s of the relevant node
by means of a transformation that turns W into a uniform distribution. In the
two class case, the transformation function is composed of two affine functions:
π = p

2w if 0 ≤ p ≤ w and π = p+1−2w
2(1−w) if w ≤ p ≤ 1. The resulting non-centered

entropy is then defined as the classical entropy of the transformed distribution.
Though this method can be used with any kind of entropy measure, it is hardly
extensible to more than two class problemes.

4 Evaluation criteria of trees in the unbalanced case

4.1 Performance measures

There exist different measures for evaluating a prediction model. Most of them
are based on the confusion matrix (see Table 1). Some measures are designed
for the prediction of a specific modality (positive class) whereas the remaining
modalities are gathered in the negative class : the recall rate ( TP

TP+FN ), that



measures the rate of positive cases actually predicted as positive, and the preci-
sion rate ( TP

TP+FP ) that gives the proportion of real positive cases among those
classified as positive by the classifier. The F-Measure is the harmonic mean of
recall and precision. Other measures do not distinguish among outcome classes.
We may cite here the overall error rate, and the sensibility and specificity (mean
of recall and precision on each class). The latter measures are less interesting
for us, since by construction they favor accuracy on the majority class. (Still,
we may cite the PRAGMA measure [21] that allows the user to specify the im-
portance granted for each class as well as its preferences in terms of recall and
precision). It follows that recall and precision are the best suited measures when
the concern is the prediction of a specific class, for instance rare class, most
costly class, positive class and so on.

Class + Class -

Class + True positives (TP) False negatives (FN)
Class - False positives (FP) True negatives (TN)
Table 1. Confusion matrix for the two classes case.

The confusion matrix depicted in Table 1 is obtained for a decision tree by
applying the relevant decision rule to each leaf. This is not a problem when the
assigned class is the majority one. But with an asymmetric criterion this rule is
not longer suited [22]: If we consider that the worst situation is a distribution
W , meaning that the probability of class i is wi in the most uncertain case,
then no decision can be taken for leaves having this distribution. Hence, leaves
where the class of interest is better represented than in this worst reference case
(fi > wi) should be assigned to the class i. This simple and intuitive rule could
be replaced by a statistical test, as we proposed it with the implication intensity
[11] for instance. In this paper, we consider however the following simple decision
rule: C = i if fi > wi. This rule is adapted to the 2-class case. With k classes, the
condition can indeed be satisfied for more than one modality and should then
be reinforced. In [11] we proposed for instance to select the class with the lowest
contribution to the off-centered entropy. To avoid the rule’s limitation, we also
move the decision threshold between 0 and 1 to observe the recall / precision
graph. This allows us to see if a method dominates an other one for different
thresholds of decision, and can also help us to choose the most appropriate
decision rule.

4.2 ROC curve

A ROC curve (Receiver operating characteristics) is a well suited tool for visu-
alizing the performances of a classifier regarding results for a specific outcome
class. Several works present its principles [23, 24]. First, a score is computed for
each example. For decision trees, it is the probability to classify this example as



positive. This probability is estimated by the proportion of positive examples in
the leaf. Then, all examples are plotted in a false positive rate / true positive
rate space, cumulatively from the best scored to the last scored. A ROC curve
close to the main diagonal means that the model provides no useful additional
information about the class. A contrario a ROC curve with a point in [0,1] means
that the model perfectly separates positive and negative examples. The area un-
der the ROC curve (AUC) summarizes the whole curve. We now examine how
the ROC curve and the AUC may be affected when an asymmetric measure is
used instead of a symmetric one.

4.3 Evaluations

Compared models and datasets Our study is based on decision trees evalu-
ated in 10 cross-validation to avoid the problems of over-fitting on the majority
class. For each dataset we consider the quadratic entropy and the asymmetric
entropy. The chosen stopping criterion, required to avoid over-fitting, is a mini-
mal information gain of 3%. Other classical stopping criteria such as the minimal
support of a leaf, or the maximal depth of the tree could be used. We selected
the 11 datasets listed in Table 2. For each of them we have a two class outcome
variable. We consider predicting the overall last frequent class. A first group of
datasets is formed by strongly imbalanced datasets of the UCI repository [25].
In the dataset letter (recognition of hand-writing letters) we consider predicting
the letter ’a’ vs all the others (letter a) and the vowels vs the consonants (let-
ter vowels). The classes of the dataset Satimage were merged into two classes
as proposed by [6]. The datasets Mammo1 and Mammo2 are real data from the
breast cancer screening and diagnosis collected within an industrial partnership.
The goal is to predict from a set of predictive features whether some regions of
interest on digital mammograms are cancers or not. This last example provides
a good illustration of learning on a imbalanced dataset: Missing a cancer could
lead to death, which renders the prediction of this class very important. A high
precision is also requested since the cost of a false alarm is psychologically and
monetary high.

Results and interpretation Table 3 shows the AUC values obtained for each
dataset. Figures 3,4,5,6 and 7 exhibit the ROC curves and the recall / preci-
sion graphs respectively for the datasets Mammo1, Mammo2, Letter a, Wave-
form merged and Satimage.

The recall / precision graphs show that when recall is high, the asymmetric
criterion ends up with a better precision. This means that decision rules derived
from a tree grown with an asymmetrical entropy are more accurate for predicting
the rare class. On both real datasets (Figures 3 and 4) we see that if we try to
maximize the recall (or to minimize the number of ‘missed’ cancers, or false
negatives), we obtain fewer false positives with the asymmetric entropy. This is
exactly the desired effect.

The ROC curve analysis shows that using the asymmetric entropy improves
the AUC criterion (Table 3). More importantly, however is the form of the curves.



Dataset # of examples # of features Imbalance

Breast 699 9 34%
Letter a 2000 16 4%
Letter vowels 2000 16 23%
Pima 768 8 35%
Satimage 6435 36 10%
Segment path 2310 19 14%
Waveform merged 5000 40 34%
Sick 3772 29 6%
Hepatisis 155 19 21%

Mammo1 6329 1038 8%
Mammo2 3297 1038 15%

Table 2. Datasets.

Fig. 3. Results for Mammo1

Dataset AUC with quadratic entropy AUC with asymmetric entropy

Breast 0.9288 0.9359
Letter a 0.8744 0.9576
letter voyelles 0.8709 0.8818
pima 0.6315 0.6376
satimage 0.6715 0.8746
segment path 0.9969 0.9985
Waveform merged 0.713 0.749
sick 0.8965 0.9572
hepatisis 0.5554 0.6338

mammo1 0.6312 0.8103
mammo2 0.6927 0.8126

Table 3. Obtained AUC



Fig. 4. Results for Mammo2

Fig. 5. Results for Letter a

The ROC curves of the quadratic entropy are globally higher on the left side of
the graph, i.e. for high scores. Then the two ROC curves cross each other, and
on the right side the asymmetric criterion is almost always dominating. We can
thus conclude that the lower the score, the more suited the use of an asymmetric
entropy. As we have seen through several examples that when predicting rare
events, we have to use small acceptation threshold (we accept a leaf when the
observed frequency of the minority class exceeds the corresponding probability
in the more uncertain distribution). Thus, ROC curves clearly highlight the
usefulness of asymmetric entropies for predicting rare classes.



Fig. 6. Results for Waveform merged

Fig. 7. Results for Satimage

The two previous remarks mean that for seeking ‘nuggets’ of the minority
class, we always get better recall and precision rates with an asymmetric crite-
rion. In other words, if we accept predicting the class of interest with a score
below 50%, then the smaller the score, the better the recall and precision rates
when compared with those obtained with a symmetric criterion.

5 Conclusion

We evaluated how using a splitting criterion based on an asymmetrical entropy
to grow decision trees for imbalanced datasets influences the quality of the pre-



diction of the rare class. If the proposed models are as expected less efficient in
terms of global measures such as the error rate, ROC curves as well as the behav-
ior of recall and precision as function of the acceptation threshold reveals that
models based on asymmetric entropy outperform those built with a symmetric
entropy, at least for low decision threshold.

For our empirical experimentation, the reference distribution W has been set
up once and for all, as the a priori distribution of the probabilities estimated
on the learning sample. A different approach would be to use at each node the
distribution in the parent node as reference W . The criterion would in that
case adapt itself at each node. A similar approach is to use Bayesian trees [5],
where in each node we try to get rid of the parent node distribution. Finally,
we noticed during our experimentations that the choice of the stopping criterion
is very important when we work on imbalanced datasets. Therefore, we plan
to elaborate a stopping criterion suited for imbalanced data, that would, for
instance, take into account the number of examples at each leaf, but allow for
a lower threshold for leaves where the relevant class is better represented. In a
more general way, various measures of the quality of association rules should
help us to build decision trees.

We did not decide about the question of the decision rule to assign a class to
each leaf. Since an intuitive rule is the one proposed in section 3, consisting in
accepting the leaves where the class of interest is better represented than in the
original distribution, we propose two alternative approaches: the first is to use
statistical rules, or quality measures of association rules. The second is to use
the graphs we proposed in this article, by searching optimal points on the recall
/ precision graph and on the ROC curve. We should consider the break-even
Point (BEP, [26]) to find the best rate, or the Pragma criterion [21].

The extension of the concepts exposed in this article to the case of more than
two modalities raises several problems. First, even if the asymmetric entropy
applies to the multiclass case, some other measures are not. The problem of the
decision rule is very complex with several classes. Indeed, setting a threshold on
each class is not efficient, because this rule can be satisfied for several classes
simultaneously. A solution is to choose the class with the frequency that departs
the most from its associated threshold, or that with the smallest contribution
to the entropy of the node. The methods of evaluation proposed in this paper
(ROC curves and recall / precision graphs) are adapted for a class vs all the
others, i.e. in the case with more than 2 classes, for the case where one modality
among the others is the class of interest. It would be more difficult evaluating the
model when two or more rare classes should be considered as equally relevant.
The evaluation of multiclass asymmetric criteria will be the topic of future work.
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