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1. Introduction

Data mining has brought a new philosophy in data analysis that is primarily driven by compu-
tational efficiency and predictive performance. In this paper we attempt to show that while this new
philosophy opens new horizons, these new techniques may themselves gain much when coupled with
traditional statistical reasoning.

For example, I recently introduced some sociologists of the University of Geneva to induction
trees. These social scientists were impressed by the ease with which such tools allowed them to extract
valuable knowledge from their datasets. However, since they were used to fit statistical models like
linear or logistic regressions or even multinomial log-linear models, they naturally wanted to know
how well the induced trees fit their data. They also wanted to test the significance of specific branch
expansions and compare them with alternatives that they found more meaningful. The classification
error rates let them unsatisfied. Being primarily interested in how the predictors jointly affect the dis-
tribution of the response variable rather than in classification, they expected indeed some divergence
Chi-square statistics and inferential tools for comparing alternative structures. Unfortunately they did
not found such information in the software outcomes.

It is indeed characteristic of data mining and especially of machine learning to focus on the
usefulness and predictive performance of the induced rules and to neglect somehow their descriptive
content. Thus, the rules are most often used as black boxes. They provide, however, as our sociol-
ogists discovered it, also very useful descriptive knowledge about the phenomenon under study. It
makes then sense to statistically validate the description provided. Only few attention has been given
so far to this aspect. Textbooks, like Han and Kamber (2001) for example, don’t mention it, and, as
far as prediction rules are concerned, statistical learning (see Hastie et al., 2001, chap. 7) concentrates
on the statistical properties of the classification error rate.

This lack of inferential tools for the descriptive content of classification rules motivated this
paper. Focusing on induction trees with categorical variables, we propose a simple trick that permits
to apply to them the inferential tools used for instance in the statistical log-modeling of multinomial
cross tables.

The paper is organized as follows. Section 2 discusses the fit issue and introduces the trick that
renders induced trees conformable with the requirements of Chi-square statistics. Section 4 is devoted
to tree comparison and shows how tests of hypotheses about the tree structure can be carried out with
the deviance statistic. Section 5 provides concluding remarks.

2. Goodness of Fit of Induced Trees

The goodness of fit of a statistical model refers to its capacity to reproduce the data. In su-
pervised learning, hence with induction trees, the goal is usually to get an individual prediction or
classification̂yα for each case. Then, thêyα have to fit the observed valuesyα of the response variable
for α = 1, · · · , n, n being the number of observed cases. The quality of the fit is in these settings
measured by the prediction or classification error rate or some function of it.
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Figure 1. (left) saturated tree and (right) an induced tree (white nodes) together with its maximal
extension (white + grey nodes). The predictors are the gender (M, F) and the sector of activity
(P=primary, S=secondary, T=tertiary) and the response variable is the marital status (yes, no). Ob-
serve that the distribution in the grayed nodes is the same as in their parental white node.

Sometimes nevertheless, and particularly in the social sciences, supervised learning tools like
induction trees are used to explore the relationships between potential predictorsxs, s = 1, . . . , p
and the response variableY rather than for classification. The focus is then on how the distribution
of Y varies with changes in the predictor profilex = (x1, . . . , xp) and the target to fit becomes the
conditional distributionsp(xj) =

(
p(Y = y1|xj), . . . , p(Y = yr|xj)

)
for j = 1, . . . , c, and we do no

longer care about the individual valuesyα. Note that if each predictorxs, s = 1, . . . , p hascs different
values, the number of possible different profiles, and hence conditional distributions, isc =

∏p
s=1 cs.

When all variables are discrete, the empirical counterpart of the conditional distributionsp(x)
can be derived from ther × c contingency tableT that cross classifies ther values ofY with the c
profiles. Lettingnij denote an element of tableT andn·j the columnj total, the maximum likelihood
estimation ofp|j = p(xj) is indeed the vector of the observed frequenciesnij/n·j, i = 1, . . . , r. Each
column of the tableT corresponds to the terminal node of a so calledsaturated tree, i.e. the tree that
exhausts all splits to generate the finest partition for the retained predictors (see Figure 1, left.)

As will be shown, a induced tree provides a predictionT̂ of T. Measuring the (descriptive)
goodness of fit of the tree consists then in measuring howT̂ fits T with for example Pearson or
log-likelihood ratio Chi-squares. To explain how we getT̂ from an induced tree, we consider the
following rebuilding model wherêTj stands for thej-th column ofT̂

T̂j = n ajp̂|j, j = 1, . . . , c(1)

The parameters are the total number of casesn, the proportionsaj of cases in column (terminal node)
j = 1, . . . , c and thec column distribution vectorsp|j. Theaj ’s are naturally estimated byn·j/n.
The only trick required concerns the estimation of thep|j ’s. Indeed, the induced tree has generally
q < c terminal nodes which generate ar × q tableTa not conformable withT. To render tableTa

conformable, we have to extend it or equivalently the induced tree.

Definition 1 Themaximal extension of an induced treeis obtained by maximally further splitting
each terminal nodek = 1, . . . , q of the tree and by distributing the cases in each new node according
to the distributionpa

|k of its parent terminal node of the induced tree. (See Figure 1, right.)

Formally, lettingXk denote the subset of profiles that belong to the group defined by the terminal
nodek, the maximally extended tree leads to the following estimations ofp|j

p̂|j = pa
|k for all xj ∈ Xk k = 1, . . . , q(2)



3. Goodness-of-Fit Measures for Induction Trees

Having defined the target tableT and the onêT predicted by the induced tree, we can now
apply the machinery of statistical tests and goodness indicators used in the statistical modeling of
cross tables.

The most popular divergence Chi-square statistics are the PearsonX2 and the devianceG2

statistics. Under some regularity conditions (see for instance Bishop et al., 1975, chap. 14) these
statistics have, when the induced tree is correct, an asymptotical Chi-square distribution. In our case,
the devianceG2 is

G2 = 2
c∑

j=1

r∑
i=1

nij ln

(
nij

n̂ji

)
and hasd = (r − 1)(c − q) degrees of freedom, which corresponds to the number of independent
constraints (2).

4. Testing Hypotheses about the tree structure

It is well known that the scope of Chi-square statistics is limited whenn becomes very large, the
smallest departure from the target becoming statistically significant. Further, the regularity conditions,
especially interiority that requires non zero expected frequencies, may not hold when the number of
variables becomes large. Nevertheless, theG2 statistic proves useful for testing hypotheses about the
tree structure.

Thanks to an additive property,G2 permits to test the difference between nested models. Let
M2 be a restricted form of modelM1. Then, the deviance between the two models is (see Agresti,
1990, p. 211)

G2(M2|M1) = G2(M2)−G2(M1)

which, if M2 is correct, has an asymptotic Chi-square distribution withd2 − d1 degrees of freedom.
For induction trees, the deviance between nested trees, i.e. between a tree and the same tree after

the subtree of interest has been removed, provides a natural way to test the statistical relevance of the
subtree. This way of testing a whole part of the tree clearly complements the information provided
by the criteria locally optimized at each split. In the example of Figure 1, we could for instance test
if the activity sector has a significant role, by comparing the induced tree with the tree that includes
only the split by gender.

Information criteria, like the AIC from Akaike (1973) and the Bayesian BIC (Schwarz, 1978;
Kass and Raftery, 1995) are useful for trading off between fit and complexity and hence for model
selection. For our settings, they read

AIC = G2 + 2(qr − q + c) and BIC= G2 + (qr − q + c) log(n)

They penalize the log-likelihood fit statisticsG2 for the degree of complexity measured by the number
(qr− q + c) = rc−d of independent parameters. The tree with the smaller value of the criteria offers
the better compromise between fit and complexity. Note that unlikeG2 these criteria are suitable for
comparing non nested trees.

5. Conclusion

We have shown how testing the statistical significance of an induced tree can be carried out
and have emphasized the kind of additional knowledge it may furnish. Though our discussion was
limited to induction trees with discrete attributes, it illustrates how traditional statistical reasoning
may improve the scope of data mining tools.



We are convinced that the inferential tools presented here could be extended to other settings,
e.g. for trees with quantitative attributes, but also to other supervised learning tools like the mining
of frequent or interesting itemsets and association rules. For the case of trees with quantitative at-
tributes, the difficulty lies in the discretization thresholds that are usually dynamically and optimally
determined during the tree growing process. The thresholds are then parameters of the model of which
we should also take account. For the mining of association rules, the central question will probably
be that of the representation of an enumerated set of association rules by a parameterized descriptive
model.
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RÉSUMÉ

Les arbres d’induction sont largement utilisés en data mining tant dans un but exploratoire
que comme outil de classification supervisée. Rares sont cependant les outils inférentiels disponibles
pour valider statistiquement la description fournie par un arbre induit. Nous proposons ici une as-
tuce qui permet d’appliquer aux arbres les outils inférentiels utiliśes par exemple en modélisation
log-linéaire de tables de contingence multidimensionnelles. Parmi ces outils, la déviance se pr̂ete
en particulierà divers test sur la structure de l’arbre induit. De la statistique de vraisemblance, on
déduit également les critères d’information AIC et BIC qui permettent d’arbitrer entre la complexité
et la qualit́e d’ajustement d’arbres non emboı̂tés. Ces outils inférentiels pour arbres d’induction
sont particulìerement appŕecíes par les chercheurs de sciences sociales qui s’intéressent en priorit́e
à comprendre comment les facteurs explicatifs interagissent sur la variable réponse, et ne sont donc
guère concerńes par le taux d’erreur de classification habituellement utilisé pour juger de la qualit́e
des arbres. La possibilité de tester des hypothèses sur la structure de l’arbre contribuèa la con-
naissance du ph́enom̀eneétudíe. Elle constitue une illustration de ce que le raisonnement statistique
traditionnel peut apporter au data mining.


