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Abstract This is an introduction on discrete-time Hidden Markov models (HMM)
for longitudinal data analysis in population and life course studies. In the Marko-
vian perspective, life trajectories are considered as the result of a stochastic process
in which the probability of occurrence of a particular state or event depends on the
sequence of states observed so far. Markovian models are used to analyze the tran-
sition process between successive states. Starting from the traditional formulation
of a first-order discrete-time Markov chain where each state is liked to the next
one, we present the hidden Markov models where the current response is driven
by a latent variable that follows a Markov process. The paper presents also a sim-
ple way of handling categorical covariates to capture the effect of external factors
on the transition probabilities and existing software are briefly overviewed. Empir-
ical illustrations using data on self reported health demonstrate the relevance of the
different extensions for life course analysis.
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1 Introduction

Markovian models are stochastic models dedicated to the analysis of the transitions
between successive states in sequences. More specifically, a Markovian model aims
to describe how the current distribution of the possible values of a characteristic
of interest depends on the previously observed values, and possibly how this de-
pendence may be moderated by observable covariates or some unobservable latent
factor.

Markov models have been extensively applied in many research areas such as
speech recognition, behavior analysis, climatology, or finance. In demographic and
population studies, they have been used for multistate analysis (e.g. Rogers, 1975;
Land and Rogers, 1982; Willekens, 2014), for modelling population processes
and life cycles (e.g., Feichtinger, 1973; Caswell, 2009), for analysing social mo-
bility (since e.g., Hodge, 1966; McFarland, 1970), and so on. However, most of
these studies consider only a simple Markov process, a first-order homogeneous
Markov chain. Extensions such as higher order Markov chains, latent-based and
non-homogeneous Markov models are instead rarely used. The aim of this paper
is to underline the potential of latent-based Markov models, the so-called Hidden
Markov Models, for life course studies.

In the Markovian perspective, life trajectories are considered as the result of a
stochastic process in which the probability of occurrence of a particular state or
event depends on the sequence of states observed so far. In other words, consider-
ing life trajectories as sequences of mutually exclusive states—e.g., sequences of
employment statuses or of health conditions—a Markovian process focuses on suc-
cessive transitions and attempts to depict the life history of an individual looking at
the probabilities to switch to the different states of interest given the state history
lived so far.

Markovian models form an extremely flexible class of models. The most imme-
diate application is the study of transition mechanisms between successive states
(e.g., studies on working career, social mobility, evolution of health conditions).
A basic Markov chain models directly the transitions between visible states, while
hidden Markov models prove useful to study how the succession of observed states
may be governed by an underlying latent process. The latter approach is particularly
interesting in life course studies where many not- or hardly observable aspects such
as motivations, beliefs, levels of frailty, may influence the observed behavior of an
individual. The salient aspect of hidden Markov models is that, unlike other latent
models, it allows for a time-varying latent characteristic. Such models prove useful,
for example, to study the transitions between unobserved vulnerability statuses re-
vealed through some observable variable such as the health condition or the general
satisfaction level.

The paper focuses on several important aspects of using Markov based models
for life course studies addressing the analysis of transition mechanisms (Section 3),
the modelling of latent processes (Section 4), probabilistic clustering, and how to
evaluate the impact of covariates on the transition process (Section 6). Finally, ex-
isting software are briefly commented in Section 7 and the concluding discussion
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in Section 8 recaps the scope and applications of Markov modelling for life course
analysis. The concepts presented all over the article are illustrated with longitudinal
data on self-rated health represented in Section 2.

2 Longitudinal data on self-rated health condition

For illustration we use data from 14 waves of the Swiss Household Panel (Voor-
postel et al., 2013). It is a yearly panel study started in 1999. We focus here on
an unbalanced sub-sample of 1,331 individuals aged 50 years and more at the first
interview and with at least three measurement occasions.

We intend to study the change over time in self-rated health conditions (SRH).
We will analyse the transitions between SRH conditions (Section 3) and, by the
means of a hidden Markov model, we will test whether there is some underlying
hidden process that drives the observed changes (Section 4). Finally we will inves-
tigate the effects of the educational level on the process (Section 6).

The SRH condition is defined from the question “How do you feel right now?”.
Five possible answers were proposed: “not well at all”, “not very well”, “so-so”,
“well”, “very well” that we shall denote respectively as P (poor), B (bad), M
(medium), W (well) and E (excellent) health condition. The distribution on the over-
all dataset shows a general condition of good health. Near 80% of the respondents
feel well (W) or very well (E) and only 2% bad (B) or very bad (P).

3 Markov chains

A discrete-time Markov chain is a stochastic process that describes how individuals
transit between a finite number of pre-defined categorical states.

A Markov process models the probabilities of being in a state given the states
visited in the past. In its basic formulation, the next value of the variable of interest
depends only on the current state that is assumed to summarize the whole history
of the individual. This is known as the Markov property and it defines a first-order
Markov chain (Figure 1). For instance, with the two state alphabet corresponding to
being in good (G) and bad health (B), we would consider, for people in a bad health
condition, the probability to stay in the same condition the next period, p(B|B),
versus the probability to improve their health condition, p(G|B). And, for those
who are in a good health, the probability to have a deterioration in health condition,
p(B|G), versus the probability to stay in good health, p(G|G).

The probability of switching from a given state to another is often assumed to re-
main unchanged over time. This defines a time-homogeneous Markov process. This
assumption is tenable in fields as machine learning, biology but is often violated in
applications in the social sciences. For example the probability of recovering from
a bad health condition is likely to change over time with the age of the respondent.

LaCOSA II, Lausanne, June 8-10, 2016 243
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Xt0 Xt1 Xt2 ... XT

Fig. 1: A graphical representation of a first-order Markov chain.

For simplicity, this paper focuses on time-homogenous Markov processes but ex-
tensions to relax the homogeneity assumption have been proposed in the literature
(see for instance the Double Chain Markov models proposed by Berchtold, 1999).

Table 1: First order Markov chain for SRH trajectories. The transition matrix.

Xt
Xt−1 P B M W E






P 0.261 0.217 0.348 0.13 0.043
B 0.024 0.159 0.53 0.271 0.018

A = M 0.006 0.049 0.473 0.435 0.038
W 0.002 0.009 0.141 0.726 0.123
E 0.000 0.003 0.043 0.521 0.433

The transition probabilities are generally represented in matrix form in the so-
called transition matrix (see for example Table 1). It is a square matrix of order m,
with m the number of states.

Considering our illustration on self-rated health conditions, Table 1 reports the
transition probabilities between health conditions estimated for a first order Markov
chain. The probabilities to stay in the current state, reported on the main diagonal,
are, with one exception, smaller than 50% meaning that there are frequent changes
within the health trajectories. The probability to change the health condition is par-
ticularly high for people in bad condition. The probabilities of changing from a poor
and a bad condition are respectively 73.9% and 84.1%.

4 Hidden Markov models

4.1 Including a latent process in life course data

Instead of modelling the stochastic process of the variable of interest—the health
status in our illustration—it is often more realistic to assume that the successive
values of this variable are governed by the underlying process of a latent variable
such as motivation, belief, or vulnerability. Assuming that such categorical latent
variable can change over time (i.e., is time-varying) following a Markov process,
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we get the so-called hidden Markov model (HMM) (see, e.g., Rabiner, 1989). The
modalities assumed by the latent variable are called hidden states.

HMMs are widely used in biosciences and genetics (e.g., Le Strat and Carrat,
1999; Shirley et al., 2010) to study sequences of DNA and protein. An extensive
literature exists in speech recognition since Baum and Petrie (1966). HMMs are also
used in behavioral and criminal studies (Bijleveld and Mooijaart, 2003; Bartolucci
et al., 2007), psychology (e.g., Visser et al., 2002) and in economics and finance
where they are known as regime switching models (e.g., Elliott et al., 1998; Hayashi,
2004; Netzer et al., 2008).

There are several alternative ways of interpreting the latent variable in HMM
providing multiple potential usages of this approach in life course studies. First, the
HMM latent variable can be seen as a related unobserved characteristic of interest.
For instance, assuming the reported health condition depends on the unobserved
frailty level of the individual, an HMM would allow to study the stochastic process
of this unobserved frailty.

Second, the hidden states may serve to capture the process heterogeneity or more
specifically the ‘person-position’ heterogeneity, i.e., differences in the individual
outcome probabiility distribution at the successive positions (e.g., McLachlan and
Peel, 2000; Zucchini and MacDonald, 2009). In that case, the levels of the latent
variable do not receive any specific interpretation but are just supposed to render the
diversity of the person-period behaviors.

Third, HMM can be used for probabilistic clustering (see Section 5). This is
similar to the capture of the process heterogeneity except that here a higher focus is
put on each level of the latent variable being interpreted as a distinct latent class.

4.2 The HMM framework

When modelling life course data with an HMM, the sequence of observed events/s-
tates are supposed to be stochastically generated from a hidden Markov process.
For each hidden state we have a different distribution of the visible state. So, it is
the hidden process that selects at each position the distribution of the visible state.1

Figure 2 shows a path diagram of a first-order hidden Markov process.
While a basic discrete first order Markov model is characterized by a response

variable X(t) with m modalities and a m×m matrix of transition probabilities A,
a first-order discrete HMM consists of five elements: i) a response variable X(t)
with m modalities;2 ii) a categorical latent variable S(t) with k modalities; iii) a
k× k matrix Q of transition probabilities between two successive hidden states; iv)
the emission—or outcome—probabilities, i.e., the probabilities pi(xt), of observing

1 For the sake of simplicity, in the rest of the paper, we shall omit the adjective “hidden” or “visible”
when the nature of the state is unambiguous from the context.
2 Even though the outcome variable X(t) could also be numeric, we consider here only the case of
a categorical response variable for simplicity.
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St0 St1 St2 ... ST

Xt0 Xt1 Xt2 ... XT

Fig. 2: A graphical representation of a first-order hidden Markov model. St is the
latent variable at time t, Xt the observed response variable.

Xt = xt when being in the hidden state i; v) the initial probability distribution π of
the k hidden states

The simplest HMM—a homogeneous hidden Markov model of order one—can
be summarized using the following equations:

qi j = p(St = i|St−1 = j) t = 1, ...,T (1a)
πi = p(St0 = i) i = 1, ...,k (1b)
pi(xt) = p(Xt = xt |St = i) i = 1, ...,k (1c)

The first two equations represent the unobservable part of the model. Equation (1a)
states that the latent variable St follows a first-order Markov process. So the cur-
rent hidden state depends only on the previous one. As for visible Markov chains,
a higher order dependence can be introduced. Equation (1b) gives the initial proba-
bility of the hidden states, i.e., the probability at the first time point t = 1.

The third equation (Eq 1c) refers to the measurement part of the model. It states
that the visible state is determined by a hidden-state-dependent process—the emis-
sion probabilities (vertical arrows in Figure 2). Such emission probabilities are also
known in the literature as response probabilities. The probability distribution of Xt
depends only on the current hidden state and does not depend on previous observa-
tions nor on previous hidden states. In other words, Equation (1c) assumes that the
observations are conditionally independent given the latent process. This is known
as the local independence assumption.

4.3 Model comparison and selection of the number of hidden states

An important aspect with HMM is the choice of the number of hidden states.
In some settings, the relevant number of states can be determined on theoretical
grounds. This would be the case, for instance, when the latent variable explicitly
stands for an a priori defined unobservable characteristic such as frail versus non-
frail. Alternatively, we may want to let the number of states be determined from the
data, i.e., choose the number of states on statistical grounds.
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Since the HMM is an extension of mixture models, the issue of finding the num-
ber of hidden states is similar to find the number of mixture components (McLachlan
and Peel, 2000). Information criteria such as the AIC and the BIC can be used. The
model with the lowest BIC (or AIC) is chosen. Although other model selection cri-
teria exists (e.g. cross-validated likelihood, Celeux and Durand, 2008), the BIC is
the most commonly used.

For instance, in order to select the optimal number of hidden states in our empir-
ical example, we compare several models in terms of likelihood and BIC increasing
the number of hidden states up to 5 (Table 2). The lowest BIC (17971.8) is observed

Table 2: SRH trajectories. The choice of the number of hidden states.

Model No. of hidden Free Log-Likelihood BIC
states parameters

HMM 2 11 -10532.6 21167.2
HMM 3 20 -8893.17 17971.82
HMM 4 31 -8887.315 18062.1
HMM 5 44 -8782.427 17972.87

Note: the number of parameters and the BIC do not include the null transition probabilities.

for the model with three hidden states.

4.3.1 A 3-state HMM for SRH trajectories

As for other latent-based models, the order of the hidden states is not meaningful.
The relationship between the data (i.e., the outcome variable) and the hidden states
have to be analyzed using the emission probabilities (Eq. 1c, here reported in Ta-
ble 3a) in order to give a “name” (labeling) each state. An alternative is to estimate
for each individual the most likely sequence of hidden states (by the means of the
Viterbi algorithm, Viterbi, 1967) and then to provide a cross tabulation between
observations and the predicted hidden states (Table 4).

The first hidden state refers to individuals with perfect health condition with
high chances to be in excellent (56.1%) or well (42.1%) condition. We will refer
to this hidden state as a situation of “very good” condition (V G). Hidden State 2
is instead mainly associated with state M (65%) or with a worse health conditions
(10% of probability of feeling B “not very well” or P “not well at all”). We will then
label this state as “frail” health condition (F). This is the only state with individuals
potentially at risk of frailty since in hidden state 1 and 3 we have almost no chance to
be in a poor or very bad health condition. Finally, Hidden State 3 is an intermediate
situation mainly associated with W (84%) or M (almost 10%). We will refer to State
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Table 3: Three-state HMM

(a) Emission probability distribution by hidden states (columns).

Hidden State 1 Hidden State 2 Hidden State 3
SRH F G V G

P 0.013 0.000 0.000
B 0.082 0.002 0.002
M 0.649 0.098 0.016
W 0.245 0.841 0.421
E 0.011 0.059 0.561

(b) Initial hidden state distribution π

F G V G

0.199 0.528 0.273

(c) Transition matrix between hidden states.

St
St−1 F G VG( )F 0.943 0.057 0.000

Q= G 0.034 0.957 0.009
VG 0.000 0.084 0.916

Table 4: Cross tabulation between observed states (by rows) and predicted hidden
states (1,331 individual sequences.)

SRH F G V G
P 29 0 0
B 181 10 3
M 1383 655 29
W 426 5471 798
E 22 414 1228

3 as a state of “good” health (G)3. In the rest of the paper we will then (re)label and
(re)order the hidden states as F , G and V G.

The transition probabilities between hidden states can be represented in matrix
form (Table 3c) or since we have only three hidden states (i.e. the latent variable has
three categories) as a path diagram (Table5). In the diagram, the arrows correspond-

3 Here, the labels of the hidden states will be printed in italics since such states are not observed
but inferred from the data.
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ing to probabilities estimated as zero are not shown and for readability purposes
transition probabilities have been rounded to two decimals.

Table 5: Transition probabilities as path diagram.

F

V G G

0.94

0.06

0.92

0.08

0.01
0.96

0.03

Despite the overall healthy aging of the Swiss population, we identify a relevant
risk of vulnerability since the first observation. The initial distribution of hidden
state (π in Table 3b) even if dominated by the hidden state G (52.7%), reports a
19.9% of chance to start the trajectory in a potentially at risk situation of frailty
(hidden state F).

According to the transition probabilities (Table 3c), the states are very persistent
meaning that a stability in health patterns is observed. There is more than 90% of
probability to stay in the same state for two consecutive periods and three transi-
tions, (F −V G), (G−V G), (V G−F), are extremely rare or impossible. The tran-
sition probabilities for individuals with a good health condition, hidden state G,
are particularly interesting. It is the most common hidden state and estimated to be
used 59% of the time. Apart from those who stay in the same hidden state, they
have more chance to fall down in the at frail condition rather than to improve their
situation (3.4% vs 0.9%) confirming that a risk of a slight deterioration in health
condition in the following period exists despite a general tendency of stability over
time.

Once estimated the hidden states via the Viterbi algorithm (Viterbi, 1967) we
can graphically represent their cross-sectional distributions as in the chronogram
reported in Figure 3.

These results confirm the one reported for a visible Markov chain with a Swiss
population in good health and with a pattern of stability or slightly deterioration
over time. However, unlike before, a hidden Markov model allows to distinguish
between three different conditions (the three hidden states) instead of analyzing the
transition probabilities among the five observed health states.
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Fig. 3: Sequence of cross-sectional distributions of hidden states.

5 Using HMM for probabilistic clustering

As already mentioned, hidden states can be interpreted as latent classes and, there-
fore, HMM can serve for clustering. HMM belong to the class of mixture models so
clustering with HMM is a model-based probabilistic clustering method. The class
membership is given by the different emission probability distributions assigned to
the hidden states.

HMM can perform two main types of clustering depending on whether the la-
tent class is allowed to vary or not over time. We cluster person-position (person-
period) states when the hidden state can vary over time, i.e., when using an un-
constrained HMM, and trajectories when the latent variable is constrained to re-
main fixed over time. Other alternatives have been proposed in the literature as (e.g.
Bicego et al., 2003) deriving pairwise dissimilarities between estimated sequences
of hidden states and then to proceed with a dissimilarity-based clustering from those
dissimilarities. Here, we focus on the first two alternatives.

5.1 Person-position state clustering

In an unconstrained conventional hidden Markov model, the latent variable is time-
varying. Therefore, each individual may move from one cluster to another over time.
In that case, we do not get clusters of individuals but clusters of states, actually of
person-position states. Considering, for example, the three-hidden-state HMM fitted
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Table 6: Emission probability distributions (columns). Constrained model.

SRH F G V G
P 0.011 0.001 0.000
B 0.069 0.003 0.003
M 0.55 0.114 0.021
W 0.346 0.801 0.458
E 0.024 0.081 0.518

before, we would have a cluster of frail states (F), one of good (G) and one of very
good (V G) states of health conditions.

The membership probability at each time point is obtained multiplying the ini-
tial distribution π by the matrix of transition probabilities Q of the hidden process.
For example, in our empirical example, the overall cluster membership probability
distribution would be at position 3 given by π ∗Q∗Q

πQ2 =
( F G V G

0.212 0.549 0.239
)
,

5.2 Trajectory clustering

To cluster the trajectories—the entire individual sequences—we have to constrain
the transition matrix of the hidden process to be the diagonal identity matrix. This
makes the latent variable time-invariant and individuals will belong to one and only
one cluster during the whole period of observation. As in the period-position state
case, we have to resort to the Viterbi algorithm to get cluster memberships.

5.2.1 HMM trajectory clustering of SRH conditions

We illustrate the clustering of trajectories with the SRH data by constraining the
transition matrix Q of the hidden process to be the identity matrix I. Re-estimating
the model with this constraint, we get the emission probability distributions reported
in Table 6. We use the notation S to designate the hidden states estimated using such
a constrained transition matrix.

According to the initial probabilities,

F G V G
( )π = 0.245 0.554 0.201
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Fig. 4: Sequences of predicted hidden states. Unconstrained HMM (left-hand side)
and with identity transition matrix (right-hand side).

we get a probability of 20.1% to belong to the hidden state V G, 55.4% of being in
hidden state G and 24.5% to be in “at risk” group F

If we compare Table 6 with the emission probabilities for the unconstrained
HMM (Table 3a), we observe only slight differences. Therefore, the interpretation of
the hidden states remains the same and this justifies using a similar labelling of the
clusters. Using the constrained transition matrix, the frail hidden state F—actually
a frail trajectory—seems to include a few more individuals with good health con-
ditions than the frail state in the unconstrained case. People classified in this frail
‘trajectory’ have 37% chances to declare a well or excellent condition at one time
point versus 26% for those in the frail state of the unconstraint model.

Figure 4 shows the differences in ten sequences of hidden states estimated using
an unconstrained HMM (clusters of person-period states, left panel) and with the
constrained transition matrix (clusters of trajectories, right panel). In the right panel
where we cluster trajectories, each case remains in the same estimated hidden state
for all periods where he/she responded. Looking at the first sequence for example,
the individual is, according to the unconstrained HMM, in the hidden states V G
for two periods and then, because of a worsening in its health status, he/she moves
to hidden states G for the next four periods. According to the constrained model,
he/she is estimated to have a good health G trajectory.

The appropriate approach should be chosen according to the research question.
If the goal is to cluster individuals according to the entire trajectories and to study
variation between groups, then a constrained matrix should be used. If we want
to focus on the evolution of the situations lived by the individuals such as short
periods at risk and recovery from positive or negative shocks, a person-period state
clustering, i.e., an unconstraint HMM, is better suited.
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6 Covariates

So far we have seen how Markov models can describe the probability to be in one
or the other state of a response variable—the SRH in our illustrative example—in
terms of the previously observed states of this same variable or of a latent Markov
process. However, it is natural to make this relationship with previous values also
depend on external factors so that we can test whether the fitted Markov process
remains the same for different values of covariates. For example, we may want to
know whether the evolution of the SRH is the same for men and women, or for
people with different education levels. Covariates are a concern for both visible
Markov models and HMMs.

In the literature, several methods have been considered to account for covariates.
Berchtold and Raftery (1999) distinguish between two main approaches: By making
the transition probabilities depend on the covariates, e.g., by means of a multinomial
regression model, or through the interaction between the previous states and the val-
ues taken by the covariates. The first alternative is flexible. It can be used with multi-
ple categorical as well as continuous covariates and also in case of multiple response
variables (Bartolucci et al., 2015). However, parametrizing the transition probabili-
ties dramatically increases the complexity of the model, which in turn involves many
numerical computation difficulties. For a detail discussion on this approach refer to
Bartolucci et al. (2012).

Here, we focus on the second alternative. The advantage of this second approach
is its simplicity. It can be applied straightforwardly without modifying the estima-
tion procedure both for Markov chains and Hidden Markov Models. However, this
way of doing implies an increase of the number of probabilities to be estimated and
works only with categorical covariates.

There are two main alternatives to make the current state depend on interaction
between the modalities of categorical covariates and the previous states. We can ei-
ther estimate directly one, possibly very large, transition matrix or approximate the
matrix with a mixture model similar to the Mixture Transition Distribution model
model proposed by Berchtold and Raftery (2002) for high-order Markov chains.
We focus here on the first alternative where we estimate a single transition matrix
with a row for each combination of the values taken by the covariates and the lag
of the variable. The estimation of this matrix requires to simply count the number
of observed transitions for each combination of modalities of the covariates. This
approach is easy to implement however, increases the number of parameters to es-
timate. For the SRH data with two covariates—e.g. age and education—with each
three modalities, the transition matrix would have 5×3×3 = 45 rows and this num-
ber would increase exponentially with the number of variables and proportionally
with the number of modalities of each variable. Below we include the covariates in
the the three-state hidden model.
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6.1 Effect of education level on the SRH process

We illustrate how we can account for covariates by studying the effect of educa-
tional level on the SRH trajectories More specifically, we include the covariate in
the HMM with three hidden states considered before.

The level of education has been coded into three categories: Low, lower sec-
ondary level (22.29% of the 13,976 data points); Medium, secondary level and vo-
cational school (44%); High, high educational level combining high level vocational
school, maturity and university degrees (33.71%).4

The result of the direct estimation of the HMM with the education covariate is
given in Table 7. The emission probabilities are very close from those of the model
without covariate (Table 3). Therefore, we can maintain the same interpretation and
labels for the hidden states.

From the transition matrix D, the probability of falling in the frail hidden state
(F) decreases with the level of education. Moreover, less educated people have a
probability to already be in a frail situation at the beginning of the sequence (Ta-
ble 7b) twice bigger than the most educated ones (0.311 versus 0.139). The level of
education has a slight positive impact also on chances to recover from a frail con-
dition. For instance, people with high level of education have 2% more chances to
move from a frail (F) to a good (G) situation (transition F-G) than those with a lower
level of education (7% against 5%). Similarly, the probability of a worsening in the
health condition (transition G-F) decreases with the educational attainment. All this
indicates that education affects positively the evolution of the health condition.

7 Available software

According to some scholars (Ritschard and Oris, 2005; Scott et al., 2005), the lim-
ited use of Markovian models in life course and medical studies is also due to
the limited software offer. Even the conventional homogeneous first-order Markov
chains are not directly available in standard packages such as SPSS, Stata or SAS,
and few dedicated software have been implemented. The March software5 for cat-
egorical variables, for instance, was introduced in 2000 but, even though it offers
advanced tools, March is not a free software, it runs only under the Microsoft Win-
dows environment and is no longer maintained.

Fortunately, there are now several R packages that offer functions to model
Markovian models. Most of these packages are designed for specific aims (e.g. for
univariate time series or with specific type of processes) and not all propose the pos-
sibility to include the effect of external covariates. The more interesting R packages
for fitting Markov models are msm (Jackson, 2011) and Biograph (Willekens,

4 The percentages reported reflect the overall distribution of the educational level over the 14 waves
considered.
5 Software available at http://www.andreberchtold.com/march.html
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Table 7: Direct estimation of the HMM with education as covariate.

(a) Emission probability distributions

F G V G

P 0.013 0.000 0.000
B 0.082 0.002 0.002
M 0.647 0.097 0.016
G 0.247 0.844 0.423
V 0.011 0.057 0.559

H CI-Width 0.026 0.015 0.026

(b) Initial hidden state distributions (π)

F G V G

Low 0.311 0.500 0.189
Medium 0.187 0.502 0.311
High 0.139 0.563 0.298

(c) Hidden transition distributions (D)

t−1 Education F G V G

F Low 0.950 0.050 0.000
F Medium 0.949 0.051 0.000
F High 0.922 0.074 0.005
G Low 0.049 0.937 0.014
G Medium 0.035 0.954 0.011
G High 0.026 0.968 0.006
V G Low 0.000 0.137 0.864
V G Medium 0.000 0.091 0.909
V G High 0.000 0.065 0.935

2014) for multi-state models in continuous time; markovchain (Spedicato and
Signorelli, 2014) for discrete-time Markov chains; HiddenMarkov (Harte, 2010),
seqHMM (Helske and Helske, 2016), and in particular depmixS4 (Visser, 2010),
LMest (Bartolucci et al., 2014) and march (the R port of the above mentioned
March software, Berchtold, 2014) for discrete-time hidden Markov models. One of
the main differences between the last three packages is the type of dependent vari-
able used. In depmixS4 the models can be fitted on data with distributions from
the generalized linear model (glm) family, the (logistic) multinomial, or the multi-
variate normal distribution (i.e., continuous and discrete outcomes). The packages
LMest and march are explicitly designed for discrete variables. These three pack-
ages differ also in the way of including covariates. depmixS4 and LMest use a
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parametrization approach. The current version (version 1.0) of march does not sup-
port covariates, but will propose the method of transition probabilities by level of
covariate values as presented in Section 6 in a next release. The empirical examples
we provide in the paper have been computed using the Windows version of march.

8 Conclusion

The article illustrates the basic aspects and the flexibility of Markovian models with
an illustration in life course studies to propose a general discussion on the relevance
and possible applications of this class of models.

Starting from the traditional formulation of an homogeneous first order Markov
chain, we presented the Hidden Markov Model and an intuitive and easy to under-
stand way of including categorical covariates. Instead of using a parametrization of
the transition probabilities, we consider directly the interaction between the states
(observed or hidden) and the modalities assumed by the covariates. One of the main
features that make Markovian models an interesting approach for life course stud-
ies is the specific role of time. The serial dependence between repeated measures
is directly taken into account. In this transitional setting, the current measurement
is described as a function of previous outcomes (Molenberghs and Verbeke, 2005)
so that the distribution of the states depends on the own past of the subject. This
aspect is particularly relevant for time-structured data such as individual life trajec-
tories. For example, we have shown the significant relationship between previous
self-reported health conditions and the current one.

In a life course perspective, modeling individual sequences at two levels, a visible
and a latent one, as in the HMM, proves particularly interesting since many aspects
of a life trajectory are not fully observable. For example, in the empirical example
we have demonstrated that SRH trajectories are related to a latent variable repre-
senting frailty regimes. Moreover, unlike conventional latent variable approaches
such as latent class or mixed effect models, HMM is a time-varying model. In many
applications, the interest is not only to analyze the inter-individual differences in the
response variable, but also the way in which individuals change their responses over
time. In a HMM approach, the unobservable characteristic that drives the observed
behavior has its own dynamics following a Markov process. The HMM then explore
the dynamics in unobserved aspects which are measured by one or more response
variables. The HMM can also be used as a clustering tool. HMM is a generalization
of the mixture model (e.g., McLachlan and Peel, 2000) where each component is
associated to one of the hidden states of the model. In particular, HMM can per-
form a probabilistic clustering in two ways. In its conventional formulation with
a time-varying latent variable individuals can move among latent classes and we
have a clustering of individual state observations. With a time-invariant latent vari-
able (i.e., a HMM with each hidden state being fully absorbing), HMM performs
a static probabilistic clustering of the individuals according to their entire observed
sequences that can be seen as a clustering of the trajectories.
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Although we focused here on the case of a single categorical outcome variable
(the self-rated health condition), hidden Markov models can be applied to multi-
variate data (Bartolucci et al., 2012) and to numeric outcome variables. Bolano and
Berchtold (2016) for example considered a double chain Markov model for numeric
outcomes.

Interesting extensions of the HMM framework we did not discuss in the paper are
the Double Chain Markov Models (see Berchtold, 1999)) that allow to relax the ho-
mogeneity assumption keeping the model parsimonious in terms of free parameters
and the introduction of mixed effects (the so called Mixed Hidden Markov Model,
Altman, 2007; Maruotti, 2011). By including (individual specific) random effects,
the mixed HMM relaxes the assumption of conditional independence of the obser-
vations (Eq 1c). The resulting model is more flexible than a conventional HMM and
it allows to distinguish between two sources of heterogeneity. The random effects
capture the between-subject variations and the hidden states capture the heterogene-
ity in the individual trajectories.

Some aspects limit the diffusion of Markovian models in life course studies and
related fields. For example, in social sciences and medical studies, a key aspect is
to analyze the effect of external factors on the dynamics of the dependent variable.
In the framework of hidden Markov models, although several alternatives to include
covariates have been considered in the literature, an easily usable framework for
estimating the effect of the covariates is still laking. Another limitation concerns the
readability of the results in particular in presence of multiple states and/or multiple
covariates. Comprehensive data visualization tools for representing empirical results
are crucially missing too. However, given the numerous potential applications of
Markovian models, and given the facilities offered by recently released software,
we can expect Markovian modelling to overcome the above mentioned issues and
this way to gain popularity also in life course research.
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Danilo Bolano, André Berchtold, Gilbert Ritschard

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information Theory,
16(2):260–269.

Voorpostel, M., Tillmann, R., Lebert, F., Kuhn, U., Lipps, O., Ryser, V.-A., Schmid,
F., Rothenbühler, M., and Boris, W. (2013). Swiss household panel user guide.
Swiss Household Panel Userguide (1999-2012), Wave 14, November 2013. Lau-
sanne FORS.

Wiggins, L. M. (1973). Panel Analysis: Latent Probability Models for Attitude and
Behavior Processes. Elsevier Scientific Pub, Amsterdam, Netherlands.

Willekens, F. (2014). Multistate Analysis of Life Histories with R. Springer-Verlag.
Use R!, Berlin.

Zucchini, W. and MacDonald, I. L. (2009). Hidden Markov models for time series.
An introduction Using R. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability, New York, NY.

260 Bolano, D., A. Berchtold, & G. Ritschard


