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Abstract. Implicative statistics criteria have proven to be valuable in-
terestingness measures for association rules. Here we highlight their in-
terest for classification trees. We start by showing how Gras’ implication
index may be defined for rules derived from an induced decision tree.
This index is especially helpful when the aim is not classification itself,
but characterizing the most typical conditions of a given conclusion. We
show that the index looks like a standardized residual and propose as
alternatives other forms of residuals borrowed from the modeling of con-
tingency tables. We then consider two main usages of these indexes. The
first is purely descriptive and concerns the a posteriori individual evalua-
tion of the classification rules. The second usage relies upon the strength
of implication for assigning the most appropriate conclusion to each leaf
of the induced tree. We demonstrate the practical usefulness of this sta-
tistical implicative view on decision trees through a full scale real world
application.
Classification tree, Implication strength, Class assignment, Rule rele-
vance, Typical profile, Targeting

1 Introduction

Implicative statistics was introduced by the French mathematician Régis Gras
[? ? ? ] as a tool for data analysis and has, since the late 90’s, been exploited
for deriving valuable interestingness measures for association rules of the form
“If A is observed, then we are very likely to observe B too” [? ? ? ? ]. The basic
idea behind implicative statistics is that a statistically observed relationship is of
interest only if the number of counter-examples is less than expected by chance,
and that the larger the difference, the more implicative it is.

We see two major motivations for this concept of statistical implication. On
the one hand, logic implication, does not admit any counter-example. Hence, it is
too strong and leaves no place for dealing with the random content of statistical
relationships. On the other hand, the classical confidence, which measures the
chances of matching the conclusion when the condition is satisfied, is not able
to tell us whether or not the conclusion is more probable than it would in case
of independence from the condition. For instance, assume that the conclusion B
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is true for 95% of all the cases. Then, a rule with a confidence of 90% would do
worse than simple chance, i.e. than deciding that B is true for all cases without
taking care of the condition A. But why looking at counter-examples and not
just at positive examples? Indeed, this is formally equivalent (see Section ??),
and hence is just a matter of taste. Looking for the rarity of counter-examples
makes the reasoning closer to what is done with logic rules, i.e. invalidating the
rule when there are (too many) negative examples.

Though, as we will show, this concept of strength of implication is appli-
cable in a straightforward manner to classification rules, only a little attention
has been paid to this appealing idea in the framework of supervised learning.
The aim of this article is to discuss the scope and limits of implicative statistics
for supervised classification and especially for classification trees. One difference
between classification rules and association rules is that the consequent of the
former has to be chosen from an a priori set list of classes (the possible states
of the response variable), while the consequent for the latter can concern any
event not involved in the premise, since there is no a priori outcome variable.
A second difference is that unlike the premises of association rules, those of a
set of classification rules define a partition of the data set, meaning that there
is one and only one rule applicable to each case. These aspects, however, do not
intervene in anyway in the definition of the implication index which just requires
a premise and a consequent. Hence, implication indexes are technically applica-
ble without restrictions to classification rules. There remains, nevertheless, the
question of whether they make sense in the supervised learning setting.

The implication index measures how typical the condition of the rule is for
the conclusion, i.e. how much more characteristic than pure chance it is for the
selected conclusion. Indeed, we are only interested in conditions under which
the probability to match the conclusion is higher than the marginal proportion
corresponding to pure chance. A condition with a probability lower than the
marginal proportion would characterize atypical situations for the conclusion,
i.e. situations in which the proportion of cases matching the conclusion is less
than in the whole data set. It would thus be characteristic of the negation of
the conclusion, not the conclusion itself. Looking at typical conditions for the
negation of the conclusion could be useful too. Nevertheless, it does not require
any special attention since it can simply be handled by looking at the implica-
tion strength of the rule in which we would have replaced the conclusion by its
negation.

The information on the gain of performance over chance provided by the im-
plication index usefully complements the knowledge provided for instance by the
classical raw misclassification rate. However, we may go a step further and, by
considering a so called targeting or condition typicality paradigm instead of the
classification paradigm, resort to implication indexes for selecting the conclu-
sion of a rule. Moreover, we could even imagine methods for growing trees that
would optimize the implication strength of the resulting rules. Such a targeting
paradigm will be adopted, for instance, by a physician who is more interested in
knowing the typical profile of persons who develop a cancer than in predicting
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for each patient whether or not he has a cancer. Likewise, a tax-collector may
be more interested in characterizing groups in which he has increased chances
to find fakers than in predicting for each taxpayer whether or not he commits
fraud. The most frequent class, commonly called the ‘majority class’ in the de-
cision tree literature, is obviously the best choice for minimizing classification
errors. However, we will see that for the targeting paradigm, the highest quality
conclusion, i.e. that for which the rule has the highest implication strength, is
not necessarily this majority class.

The paper is organized as follows. Section ?? shows how Gras’ implication
index can be applied to classification rules derived from an induced decision tree.
It proposes alternatives to Gras’ index inspired from residuals used in the mod-
eling of multiway contingency tables. Section ?? discusses the use of implication
strength for the individual validation of each classification rule. In Section ??
we adopt the aforementioned typical profile paradigm and consider using the
implication indexes for selecting the most relevant conclusion in a leaf of a clas-
sification tree. We also briefly describe different approaches for growing trees
from that typical profile standpoint. Section ?? reports experimental results that
highlight the behavior of the implication strength indexes and illustrates their
potential on a real world application from social sciences. Finally, we present
concluding remarks in Section ??.

We start our presentation by adopting a classical classification standpoint.

Table 1. The illustrative data set

Civil status Sex Activity sector Number of cases

married male primary 50
married male secondary 40
married male tertiary 6
married female primary 0
married female secondary 14
married female tertiary 10
single male primary 5
single male secondary 5
single male tertiary 12
single female primary 50
single female secondary 30
single female tertiary 18
divorced/widowed male primary 5
divorced/widowed male secondary 8
divorced/widowed male tertiary 10
divorced/widowed female primary 6
divorced/widowed female secondary 2
divorced/widowed female tertiary 2
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2 Classification Trees and Implication Indexes

For our discussion, we consider a fictional example where we are interested in
predicting the civil status (married, single, divorced/widowed) of individuals
from their sex (male, female) and sector of activity (primary, secondary, tertiary).
The civil status is the outcome (or response or decision or dependent) variable,
while sex and activity sector are the predictors (or condition or independent
variables). The data set is composed of the 273 cases described by Table ??.

2.1 Trees and Rules

Classification rules can be induced from data using classification trees in two
steps. First, the tree is grown by seeking, through recursive splits of the learn-
ing data set, some optimal partition of the predictor space for predicting the
outcome class. Each split is done according to the values of one predictor. The
process is greedy. It starts by trying all predictors to find the “best” split of the
whole learning data set. Then, the process is repeated at each new node until
some stopping criterion becomes true. In a second step, once the tree is grown,
classification rules are derived by choosing the most relevant value, usually the
majority class (the most frequent), in each leaf (terminal node) of the tree.
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Fig. 1. Example: Induced tree for civil status (married, single, divorced/widowed)

Figure ?? shows the tree induced with the CHAID method [? ], using a 5%
significance level and a minimal node size fixed at 20. The same tree is obtained
with CART [? ] using a minimal .02 gain value. The three numbers in each node
represent the counts of individuals who are respectively ‘married’, ‘single’, and
‘divorced or widowed’. The tree partitions the predictor space into groups such
that the distribution of the outcome variable, the civil status, differs as much
as possible from one group to the other. For our discussion, it is convenient to
represent the four resulting distributions into a table that cross classifies the
outcome variable with the set of profiles (the premises of the rules) defined by
the branches. Table ?? is thus associated to the tree of Figure ??.
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Table 2. Table associated to the induced tree

Man Woman
primary or secondary

Civil Status secondary tertiary primary or tertiary Total

Married 90 6 0 24 120

Single 10 12 50 48 120
Div./Widowed 13 10 6 4 33

Total 113 28 56 76 273

As mentioned, classification rules are usually derived from the tree by assign-
ing the majority class of the leaf to the branch that leads to it. For example, a
man working in the secondary sector belongs to leaf 3 and will be classified as
married, while a man of the tertiary sector (leaf 4) will be classified as single.
In Table ??, the column headings define the premises of the rules, the conclu-
sion being given, for each column, by the row containing the greatest count.
Using this approach, the four following rules are derived from the tree shown in
Figure ??:

R1: Man of primary or secondary sector ⇒ married
R2: Man of tertiary sector ⇒ single
R3: Woman of primary sector ⇒ single
R2: Woman of secondary or tertiary sector⇒ single

In contrast to association rules, classification rules have the following char-
acteristics: i) The conclusions of the rules can only be values (classes) of the
outcome variable, and ii) the premises of the rules are mutually exclusive and
define a partition of the predictor space. Nonetheless, they are rules and we can
then apply to them concepts such as support, confidence and, which is here our
concern, implication indexes.

2.2 Counter-examples and Implication Index

The index of implication [see for instance ? , p19] of a rule is defined from the
number of counter-examples, i.e. of cases that match the premise but not the
conclusion. In our case, for each leaf (represented by a column in Table ??), the
count of counter-examples is the number of cases that are not in the majority
class. Letting b denote the conclusion (row of the table) of rule j and nbj the
maximum in the jth column, the number of counter-examples is nb̄j = n·j−nbj .
The index of implication is a standardized form of the deviation between this
number and the number of counter-examples expected when assuming that the
distribution of the outcome values is independent of the premise.

Formally, the independence hypothesis H0 states that the number Nb̄j of
counter-examples of rule j results from a random draw of n·j cases. Under
H0, letting nb·/n be the marginal proportion of cases in the conclusion class
b of rule j and setting nb̄· = n − nb·, Nb̄j follows a binomial distribution
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Table 3. Observed numbers nb̄j and nbj of counter-examples and examples

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary Total

0 (counter-example) 23 16 6 28 73
1 (example) 90 12 50 48 200

Total 113 28 56 76 273

Table 4. Expected numbers ne
b̄j and ne

bj of counter-examples and examples

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary Total

0 (counter-example) 63.33 15.69 31.38 42.59 153
1 (example) 49.67 12.31 24.62 33.41 120

Total 113 28 56 76 273

Bin(n.j , nb̄·/n), or, when n.j is not fixed a priori, a Poisson distribution with
parameter ne

b̄j
= nb̄·n·j/n [? ]. In the latter case, the parameter ne

b̄j
is both the

mathematical expectation E(Nb̄j | H0) and the variance var(Nb̄j | H0) of the
number of counter-examples under H0. It is the number of cases in leaf j that
would be counter-examples if they were distributed among the outcome classes
according to the marginal distribution, i.e. that of the root node (right margin
in Table ??).

Gras’ implication index is the difference nb̄j − ne
b̄j

between the observed and
expected numbers of counter-examples, standardized by the standard deviation,
i.e., if we retain the Poisson model,

Imp(j) =
nb̄j − ne

b̄j√
ne

b̄j

, (1)

which can also be expressed in terms of the number of cases matching the rules
as Imp(j) = −(nbj − ne

bj)/
√
n·j − ne

bj .
Let us make the calculation of the index explicit for our example. We define

for that the variable “predicted class”, denoted cpred, which takes value 1 for
each case (example) belonging to the majority class of its leaf and 0 otherwise
(counter-example). By cross-classifying this variable with the premises of the
rules, we get Table ?? where the first row gives the number nb̄j of counter-
examples for each rule and the second row the number nbj of examples.

Likewise, Table ?? gives the expected numbers ne
b̄j

and ne
bj of negative ex-

amples (counter-examples) and positive examples obtained by distributing the
nj· covered cases according to the marginal distribution. Note that these counts
cannot be computed from the margins of Table ??. They are obtained by first
dispatching the column total using the marginal distribution of Table ?? and
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Table 5. Contributions to the Chi-square measuring divergence between Tables ??
and ??

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary

0 (counter-example) -5.068 0.078 -4.531 -2.236
1 (example) 5.722 -0.088 5.116 2.525

then separately aggregating each resulting column according to its correspond-
ing observed majority class (not the expected one!). This explains why Tables ??
and ?? do not have the same right margin.

From these two tables, we can easily get the implication indexes using for-
mula (??). They are reported in the first row of Table ??. For the first rule,
the index equals Imp(1) = −5.068. This negative value indicates that the num-
ber of observed counter-examples is less than the number expected under the
independence hypothesis, which stresses the relevance of the rule. For the sec-
ond rule, the implication index is positive, which tells us that the rule is less
powerful than pure chance since it generates more counter-examples than would
classifying without taking account of the condition.

2.3 Implication Index and Residuals

In its formulation (??), the implication index looks like a standardized residual,
namely as the (signed square root of) the contribution to the Pearson Chi-
square [see for example ? , p 224]. The implication index is indeed related to
the Chi-square that measures the divergence between Tables ?? and ??. The
contributions of each cell to this Chi-square are depicted in Table ??, those of
the first row being the implication indexes.

This interpretation of Gras’ implication index in terms of residuals (residuals
for the fitting of the counts of counter-examples by the independence model)
suggests that other forms of residuals used in the framework of the modeling of
the counts in multiway contingency tables could also prove useful for measuring
the strength of rules. These include:

The deviance residual, resd(j) = sign(nb̄j − ne
b̄j

)
√
|2nb̄j log(nb̄j/n

e
b̄j

)|, which is

the square root of the contribution (in absolute value) to the likelihood ratio
Chi-square [? , pp 136-137].

Freeman-Tukey’s residual, resFT (j) = √nb̄j +
√

1 + nb̄j −
√

4ne
b̄j

+ 1, which

results from a variance-stabilizing transformation [? , p 137].
Haberman’s adjusted residual, resa(j) = (nb̄j − ne

b̄j
)/
√
ne

b̄j
(nb·/n)(1− n·j/n),

which is the Pearson standardized residual divided by its standard error [?
, p 224].
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Table 6. The various residuals as alternative implication indexes

Residual Rule R1 Rule R2 Rule R3 Rule R4

Standardized (Gras’ index) ress -5.068 0.078 -4.531 -2.236
Deviance resd -6.826 0.788 -4.456 -4.847
Freeman-Tukey resFT -6.253 0.138 -6.154 -2.414
Adjusted resa -9.985 0.124 -7.666 -3.970

There are thus different ways of measuring the departure from the expected
number of counter-examples. It is always instructive to cross-compare values
produced by such alternatives. When they are concordant, as they should be,
comparison reinforces the reliability of the outcome. Divergences, on the other
hand, flag situations for which we should be more cautious before drawing any
conclusion from the numerical value of a given index. Section ?? provides some
highlights on the specific behavior of each of the four alternatives considered
here.

Table ?? exhibits the values of these alternative implication indexes for each
of the four rules derived from the tree in Figure ??. We observe that they are
concordant as expected. The standardized residual is known to have a variance
that may be lower than one. This is because the counts nb· and n·j are sam-
ple dependent and hence themselves random. Thus ne

b̄j
is only an estimation

of the Poisson parameter. Ignoring the randomness of the denominator in for-
mula (??) leads to underestimating the strength. The deviance, adjusted and
Freeman-Tukey’s residuals are better suited for this situation and are known to
have in practice a distribution closer to the standard normal N(0, 1) than the
simple standardized residual. We can see in our example that the standardized
residual, i.e. Gras’ implication index, tends to give lower absolute values than
the three alternatives. The only exception is rule R3, for which the deviance
residual provides a slightly smaller value than Gras’ index. Note that R3 admits
only six counter-examples.

2.4 Implication Intensity and p-value

In order to evaluate the statistical significance of the computed implication
strength, it is natural to look at the p-value, i.e. at the probability p(Nb̄j ≤
nb̄j | H0). When ne

b̄j
is small, this probability can be obtained, conditionally

on nb· and n·j , with the Poisson distribution P (ne
b̄j

). For large ne
b̄j

, the normal
distribution gives a good approximation. A correction for the continuity may be
necessary, however, because the difference might be for example as large as 2.6
percent when ne

b̄j
= 100. Letting φ(.) denote the standard normal distribution,

we have p(Nb̄j ≤ nb̄j | H0) ' φ
(

(nb̄j + 0.5− ne
b̄j

)/
√
ne

b̄j

)
.

The implication intensity can be defined as the complement of such a p-value.
Gras [see for instance ? ] defines it in terms of the normal approximation, but
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without the correction for continuity. We compute it as

Intens(j) = 1− φ
(

(nb̄j + 0.5− ne
b̄j)/

√
ne

b̄j

)
. (2)

In either case, this intensity can be interpreted as the probability of getting,
under the independence hypothesis H0, a higher number of counter-examples
than the count observed for rule j. Table ?? gives these intensities for our four
rules. It shows also the complement of the p-values of the deviance, adjusted
and Freeman-Tukey’s residuals computed with the continuity correction, i.e. by
adding 0.5 to the observed counts of counter-examples. Notice that provided
probabilities below 50% correspond to positive values of the indexes, i.e. bad
ones, and those above 50% to negative ones. This is a direct consequence of
taking the probabilities from the normal distribution, which is symmetric.

3 Individual Rule Relevance

The implication intensity and its variants are useful for validating each classifi-
cation rule individually. This knowledge enriches the usual global validation of
the classifier. For example, among the four rules issued from our illustrative tree,
rules R1, R3 and R4 are clearly relevant, while R2, with an implication intensity
below 50% should be rejected.

The question is then what shall we do with the cases covered by the conditions
of irrelevant rules. Two solutions can be envisaged: i) Merging cases covered by
an irrelevant rule with another rule, or ii) changing the conclusion. The possible
choice of a more suitable conclusion is discussed in Section ??. We exclude indeed
further splitting of the node, since we assume that a stopping criterion has been
matched. As for the merging of rules, if we want to respect the tree structure
we have indeed to merge cases of a leaf with those of a sibling leaf, which is
equivalent to pruning the corresponding branch. In our example, this leads to
merging rules R1 and R2 into a new rule “Man ⇒ married”. Residuals for the
number of counter-examples of this new rules are respectively ress = −3.8,
resd = −7.1, resFT = −4.3 and resa = −8.3. Except for the deviance residual,
they exhibit a slight deterioration as compared to the implicative strength of
rule R1.

It is interesting here to compare the implicative quality with the error rate
used for validating classification rules. The number of counter-examples consid-
ered is precisely the number of errors produced by the rule on the learning set.

Table 7. The implication intensity and its variants (with continuity correction)

Residual Rule R1 Rule R2 Rule R3 Rule R4

Standardized (Gras) ress 1.000 0.419 1.000 0.985
Deviance resd 1.000 0.099 1.000 1.000
Freeman-Tukey resFT 1.000 0.350 1.000 0.988
Adjusted resa 1.000 0.373 1.000 1.000



10 G. Ritschard, V. Pisetta, D. A. Zighed

Table 8. Implication index penalized for the rule complexity

Rule resd k Imppen

R1 -6.826 2 -3.75
R2 0.788 2 3.37
R3 -4.456 2 -1.62
R4 -4.847 2 -1.90

Man ⇒ married -7.119 1 -4.89
Woman ⇒ single -7.271 1 -5.06

The error rate is thus the percentage of counter-examples among the cases cov-
ered by the rule, i.e. err(j) = nb̄j/n·j , which is also equal to 1 − nbj/n·j , the
complement to one of the confidence. The error rate suffers that from the same
drawbacks as the confidence. For instance, it does not tell us how better the rule
does than a classification done independently of any condition. Furthermore, the
error rate is linked with the choice of the majority class as conclusion. For our
example, the error rate is respectively for our four rules 0.2, 0.57, 0.11 and 0.36.
The second rule is thus also the worst from this point of view. Comparing with
the error rate at the root node, which is 0.56, shows that this rate of 0.57 is very
bad. Thus, for being really informative about the relevance of the rule, the error
rate should be compared with the error rate of some naive baseline rule. This
is exactly what the implication index does. Resorting to implication indexes, we
get in addition probabilities which permits to distinguish between statistically
significant and non significant relevance.

Practically, in order to detect over-fitting, error rates are computed on vali-
dation data sets or through cross validation. Indeed, the same can be done for
the implication quality by computing the implication indexes and intensities in
generalization.

Alternatively, we could consider, in the spirit of the BIC (Bayesian infor-
mation criteria) or MDL (Minimum message length) principle, to penalize the
implication index by the complexity of the condition. Since the lower the impli-
cation index of a rule j, the better it is, the index should be penalized by the
length kj of the branch that defines the condition of rule j. The general idea
behind such penalization is that the simpler the condition, the lower the risk to
assign a bad distribution to a case. As a first proposal we suggest the following
penalized form inspired from the BIC [? ] and based on the deviance residual

Imppen(j) = resd(j) +
√
kj ln(nj) .

For our example, the values of the penalized index are given in Table ??.
These penalized values confirm the ranking of the initial rules, which here

all have the same length kj = 2. In addition, the penalized index is useful for
validating results of merging the two rules R1 and R2. Table ?? highlights the
superiority of the merged rule “Man ⇒ married” over both rules R1 and R2. It
gives a clear signal in favor of merging.
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At the root node, both the residual and the number of conditions are zero.
Hence, the penalized implication index is zero too. Thus, a positive penalized
implication index suggests that we can hardly expect that the rule would do
better in generalization than assigning randomly the cases according to the root
node distribution, i.e. independently of any condition. For our example, this
confirms once again the badness of rule R2.

4 Adopting a Typical Profile Paradigm

To this point, we have assumed that the conclusion of the rule was simply the
majority class. This is justified when the pursued aim is classification. However,
as already mentioned in the introduction, there are situations where the typical
profile paradigm is better suited. Remember the example of the physician pri-
marily interested in the characteristics of those patients who develop a cancer,
and that of the tax-collector who wants to know the groups of tax payers who
are at most risk of committing fraud. Social sciences, where the concern is most
often to understand phenomena rather than to predict values or classes, is also a
distinctive domain to which the typical profile paradigm suits well. For example,
sociologists of the family may be interested in determining the profiles in terms of
education, professional career, parenthood, etc. that increase chance of divorce,
and in Section ??, we present an application where the goal is to characterize
the profiles of those students who are at most risk of repeating their first year.
In such situations, the majority class rule is no longer the best choice. Indeed,
from this typical profile standpoint, it is more natural to search for rules with
the highest possible implication strength than to minimize the misclassification
rate.

Having this optimal implication strength goal in mind, we successively discuss
the assignment of the most relevant conclusion to the premises defined by a
given grown tree, and the use of implication strength criteria in the tree growing
process.

4.1 Maximal Implication Strength versus Majority Rule

For a given grown tree, maximizing the implication strength is simply achieved by
assigning to each leaf the conclusion for which the rule gets its highest implication
intensity. Though ? ], pp 282-287 have already considered this way of proceeding,
they do not provide a sound justification for the approach. Note also that the
method has not, to the best of our knowledge, been implemented so far in any
tree growing software.

To illustrate the principle, we give in Table ?? the values of the alternative
indexes and intensities of implication for each of the three possible conclusions
that may be assigned to rule R2 of our example. The conclusion labeled “single”
corresponds to the majority class. However, considering the strength of impli-
cation, the best conclusion is “divorced or widowed”. All four indexes designate
this conclusion as the best with an implication intensity that goes from 89.1%
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for Gras’ index to 99.9% for the deviance residual. Indeed, to be a man working
in the tertiary sector is not typical of single people since the rule would in that
case generate more counter-examples than expected by chance. Concluding to
“divorced or widowed” is better in that respect since the number of positive
examples is in that case larger than expected by chance. Again we can notice
that Gras’ index seems to slightly under-estimate the implication intensity.

An important point is that unlike the majority rule, seeking the maximal
implication strength favors the variability of conclusions among rules, meaning
that we have more chances to create at least one rule for each value of the
outcome variable. In our example, using the majority class we do not create any
rule that concludes with divorced/widowed, while with the implication strength
at least one rule concludes with each of the three outcome states. Indeed, we
need at least as many different profiles as outcome classes if we want at least
one rule concluding with each outcome state, i.e. we should have r ≤ q with r
the number of outcome classes and q the number of rules.

By definition, if we assign the same conclusion to all rules, any negative
departure from the expected number of counter-examples of a rule should be
compensated for a positive departure for an other rule. Likewise, for a given
rule, any negative departure from the expected number of counter examples for
one of the possible conclusions should be compensated for a positive one for an
other conclusion. Formally we have

nı̄j < ne
ı̄j ⇒

{
there exists k 6= i such that nk̄j > ne

k̄j
and

there exists h 6= j such that nı̄h > ne
ı̄h

nı̄j > ne
ı̄j ⇒

{
there exists k 6= i such that nk̄j < ne

k̄j
and

there exists h 6= j such that nı̄h < ne
ı̄h

As a consequence, all the rules cannot attain their maximal implication strength
for the same conclusion, which favors indeed the diversity of the conclusions
among rules. A second consequence is that at each leaf we may assign a conclu-
sion such that the rule gets a non positive implicative index or, equivalently, an
implication intensity greater or equal to 50%.

Table 9. Implication indexes and intensities of rule R2 for each possible conclusion

Indexes Intensity
Residual married single div./wid. married single div./wid.

Standardized ress 1.6 0.1 -1.3 0.043 0.419 0.891
Deviance resd 3.9 0.8 -3.4 0.000 0.099 0.999
Freeman-Tukey resFT 1.5 0.1 -1.4 0.054 0.398 0.895
Adjusted resa 2.4 0.1 -2.0 0.005 0.379 0.968
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4.2 Growing Trees with Implication Strength Criteria

Let us now look at the tree growing procedure and assume that the rule conclu-
sions are selected so as to maximize the implication strength of the rules. The
question is whether there is a way to split a node so as to maximize the strength
of the resulting rules. The difficulty here is that a split results indeed in more
than one rule. Hence, we face a multicriteria problem, namely the maximization
over sets of implication strengths.

To get simple solutions, one can think to transform the multidimensional
optimization problem into a one dimensional one by focusing on some aggregated
criterion. The following are three possibilities:

– A weighted average of the concerned optimal implication indexes, taking
weights proportional to the number of concerned cases.

– The maximum over the strengths of the rules belonging to the set.
– The minimum over the strengths of the rules belonging to the set.

The first criterion is of interest when the goal is to achieve good strengths on
average. The second one should be adopted when we look for a few rules with
high implication strengths without bothering too much for the other ones, and
the latter is of interest when we want the highest possible implication strength
for the poorest rule.

We have not yet experimented tree growing with these criteria. It is worth-
while however to say that, from the typical profile paradigm standpoint methods
such as CHAID that attempt to maximize association seem preferable to those
based on entropies. Indeed, maximizing the strength of association between the
resulting nodes and the outcome variable leads to distributions that departure as
much as possible from that in the parent node, and hence from that of the root
node corresponding to independence. We may thus expect the most significant
departures from independence and hence rules with strong implication strength.
Methods based on entropy measures, on the other hand, favor departures from
the uniform, or equiprobable, distribution and are therefore more in line with
the classification standpoint.

5 Experimental Results

We present here a series of experimental results that provide additional insights
into the behavior and scope of the original implication index and the three vari-
ants we introduced. First, we study the behavior of the indexes. We then present
an application, which also serves as a basis for experimental investigations re-
garding the effect of the continuity correction and the consequences of using
maximal implication strength rules instead of the majority rule on classification
accuracy, recall and precision.
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5.1 Compared Behavior of the 4 Indexes

In order to gain better understanding on how the different implication indexes
behave, we ran a simulation to see how they evolve when the number of counter-
examples is progressively decreased from the expected number under indepen-
dence to 0. At independence we expect a null implication strength, while when
no counter-examples are observed we should have high implication strength.

The simulation design is as follows. We consider a dataset of size 1000 and
a rule defined from a leaf containing 200 cases (20%). We suppose that a pro-
portion p of the 1000 cases belongs to the outcome class selected as conclusion
for the rule. Starting with a proportion f = f0 of cases of the leaf that fall in
the conclusion class, we progressively increase f in 100 constant steps until the
maximum f = 100% is reached. The initial starting point corresponds to inde-
pendence and the final point to a pure distribution with no counter-examples.
At each step we compute, applying the continuity correction, the value of each of
the 4 indexes, namely the standardized, Freeman-Tukey, adjusted and deviance
residuals.

Figure ?? shows the results for p = 10%, 50% and 90%. Notice the differ-
ence of scale between the three plots: The implication strengths are higher when
the class of interest is infrequent in the population, i.e. when p is small. We
observe that the standardized and adjusted residuals evolve linearly between in-
dependence and purity, while the increase in Freeman-Tukey’s residual tends to
accelerate when we approach purity. The deviance residual evolves curiously in
a parabolic way. It dominates the other indexes in the neighborhood of indepen-
dence, it reaches a maximum (in absolute terms) and diminishes (in absolute
terms) when we approach purity. This decreasing behavior when the number of
counter-examples tends to 0 disqualifies the deviance residual as a good measure
of the rule implication strength. The linear evolution of the standadized and
adjusted residuals makes them our prefered measures, the latter having in addi-
tion the advantage of being the most reliably comparable with standard normal
thresholds.

5.2 Application on a Student Administrative Dataset

We consider administrative data about the 762 first year students who were en-
rolled in fall 1998 at the Faculty of Economic and Social Sciences (ESS) of the
University of Geneva [? ]. The goal is to learn rules for predicting the situation
(1. eliminated, 2. repeating first year, 3. passed) of each student after the first
year, or more precisely to discover the typical profile of those students who are
either eliminated or have to repeat their first year. For the learning data, the
response variable is thus the student situation in October 1999. The predictors
retained are age, first time registered at University of Geneva, chosen orienta-
tion (Social Sciences or Business and Economics), type of secondary diploma
achieved (classic, latin, scientific, economics, modern, other), place where sec-
ondary diploma was obtained (Geneva, Switzerland outside Geneva, Abroad),
age when secondary diploma was obtained, nationality (Geneva, Swiss except
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Fig. 2. Behavior of the 4 indexes between independence (Step 0) and purity (Step 100).
Values reported include the continuity correction.
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Fig. 3. CHAID induced tree for the ESS Student data. Outcome states are from top to
down: eliminated, repeating 1st year, passed. Figures next to the bars are percentages.
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Table 11. State assigned by the various criteria

Leaf 6 7 8 9 10 11 12 13 14

Majority class 3 3 3 3 1 1 3 1 1

Standardized residual 3 3 3 3 1 1 3 2 1

Freeman-Tukey residual 3 3 3 3 1 1 2 2 1

Deviance residual 3 3 3 2 1 1 2 2 1

Adjusted residual 3 3 3 2 1 1 2 2 1

Geneva, Europe, Non Europe) and mother’s living place (Geneva, Switzerland
outside Geneva, Abroad).

Figure ?? shows the tree induced using CHAID with minimal node size set
to 30, minimal parent node size to 50 and a maximal 5% significance for the
Chi-square. Table ?? provides the details regarding the counts in the leafs. Here,
our interest is not in the growing procedure, but rather in the state assigned to
each leaf.

We used successively the majority class rule and each of the four variants
of implication indexes for that. Table ?? reports the results. We can see that
the 5 methods agree for 6 out of the 9 leaves. The conclusion assigned to leaves
number 9, 12 and 13 vary, however, among the 5 methods. All four implication
indexes assign state 2, “repeating the first year”, to leaf 13 where the majority
class is 1, “eliminated”. This tells us that belonging to this leaf, i.e having a not
typical Swiss college secondary diploma obtained either in Geneva or abroad and
having chosen a business and economic orientation, is a typical profile of those
who repeat their first year. And this holds, indeed, despite “repeating the first
year” is not the majority class of the leaf.

The deviance and adjusted residuals agree about assigning also state 2, “re-
peating”, to leaves number 9 and 12, and the Freeman-Tukey residual agrees also
with this conclusion for leaf 12. These leaves also define characteristic profiles
of those who repeat their first year, even though the majority class for these
profiles is “passed”.

5.3 Effect of Continuity Correction

We expect continuity correction, i.e. adding .5 to the observed counts nb̄j of
counter-examples, to have only very marginal effects and to be important only
in conjunction with small minimal node sizes.

For our application on the ESS student data, the continuity correction changes
the conclusion only when we use the Freeman-Tukey residual for leaf 12 (with
84 cases). The conclusions remain the same for all other leaves and for all leaves
when we use any of the three other residuals. Furthermore, the effect of the con-
tinuity correction vanishes when we multiply all the counts by a factor greater
or equal to 1.4, which confirms our expectation.
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Nevertheless, we suggest systematically introducing the error correction when
computing the indexes. There are two reasons for this: First, it does not change
much the index values in case of large counts and produces values best suited for
comparison with standard normal thresholds in case of small counts. Secondly,
it avoids possible troubles (division by zero for instance) that may occur when
some observed counts are zero.

5.4 Recall and Precision

In terms of the overall error rate, selecting the majority class is no doubt the
better choice. However, if we are interested in the recall rate, i.e. in the pro-

Correct classification rate
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Fig. 4. Correct classification rate, 10-fold CV

portion of cases with a given output value ck that are detected as having this
value, we may expect the implication indexes to outperform the majority rule for
infrequent classes. Indeed, highly infrequent outcome states have high chances
to never be selected as conclusion by the majority rule. We may therefore ex-
pect low recall for them when we select the most frequent class as conclusion.
Regarding precision, i.e. the proportion of cases classified as having a value ck
that effectively have this value, expectations are less clear since the relationship
between the numerator and denominator seems not linked to the way of choosing
the conclusion.

In order to verify these expectations on our ESS student data, we computed
for the majority rule and each of the four variants of implication indexes, the
10-fold cross-validation (CV) values of the overall good classification rate, as
well as of the recall and precision for each of the three outcome states. As can
be shown on Figure ?? the loss in accuracy that results from using maximal
implication rules lies between 12% for the adjusted residual and 10% for the
standard residual.

Figure ?? exhibits the CV recall rates obtained for each of the three states.
They confirm our expectations: selecting the conclusion according to implication
indexes deteriorates the recall for the majority class “passed”, but results in an
improvement in recall for the two other classes. The improvement is especially
important for the last frequent state, i.e. “repeating”, for which we get recall
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rates ranging between 30% and 40% instead of almost 0% with the majority
rule.

In Figure ??, we observe an improvement in precision for “passed” (the ma-
jority class) and “repeating” (the last frequent class) and a slight deterioration
for “eliminated”. This illustrates that the choice of the conclusion has apparently
no predictable effect on precision. Indeed, the only thing we may notice here is
that improvement concerns the two classes with a proportion of cases that is
further (on either side) from the equiprobable probability 1/c, where c is the
number of outcome classes.

6 Conclusion

The aim of this article was to demonstrate the usefulness of the concept of im-
plication strength for rules derived from induced decision trees. We have shown
that Gras’ implication index can be applied in a straightforward manner to clas-
sification rules and have proposed three alternatives inspired from residuals used
in the statistical modeling of multiway contingency tables, namely the deviance,
adjusted and Freeman-Tukey residuals. As for the scope of the implication in-
dexes we have successively discussed their use for evaluating individual rules, for
selecting the conclusion of the rule and as criteria for growing trees. We have
stressed that implication indexes are a valuable complement to classical error
rates as validation tools. They are especially interesting in a targeting frame-
work where the aim is to determine the typical profile that leads to a conclusion
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Fig. 6. Precision, 10-fold CV

rather than classifying individual cases. As criteria for selecting the conclusion,
they may be a useful alternative to the majority rule in the case of imbalanced
data. Their advantage is that in such imbalanced situation and unlike decisions
based on the majority class, they favor conclusion diversity among rules as well
as recall for poorly represented classes.

Four variants of implication indexes have been discussed. Which one should
we use? The simulation study of their behavior has shown that the deviance
residual curiously diminishes when the number of counter-examples tends to
zero and should therefore be disregarded. The standard residual (Gras’ index)
and Haberman’s adjusted residual both evolve linearly between independence
and purity and thus seem to be the better choices. From the theoretical stand-
point, if we want to compare the values with thresholds of the standard normal,
Haberman’s adjusted residual is preferable.

We have also introduced the implication intensity as the probability to get by
chance more counter-examples than observed. This is indeed just a monotonic
transformation of the corresponding implication index. Hence rankings based on
the indexes or on the intensities will necessarily agree. Indexes seem better suited,
however, to distinguishing between situations with high implication strengths.
The intensities on the other hand, provide additional information about the
statistical significance of the implication strength.

It is worth mentioning that, to our knowledge, implication indexes have not
so far been implemented in tree growing software. Making them available is
essential for popularizing them. We have begun working on implementing the
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maximal implication selection process and tree growing algorithms based on
implication criteria into Tanagra [? ] a free open source data mining software,
and plan also to make these tools available in Weka.

Beside this implementation task, there are some other issues that would merit
further investigation. For instance, the penalized implication index we proposed
in Section ?? is not completely satisfactory. In a n-arry tree the paths to the
leaves are usually shorter than in a binary tree, even if they define the same
leaves. Penalization based on the length of the path as we proposed, would
therefore be different for a rule derived from a binary tree than for the same rule
derived from a n-arry tree. The use of implication criteria in the tree growing
process needs also a deeper reflection.

Despite all which remains to be done, our hope is that this article will con-
tribute to enlarge both the scope of induced decision trees and that of implication
statistics.


