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Abstract. This paper highlights the interest of implicative statistics
for classification trees. We start by showing how Gras’ implication index
may be defined for the rules derived from an induced decision tree. Then,
we show that residuals used in the modeling of contingency tables pro-
vide interesting alternatives to Gras’ index. We then consider two main
usages of these indexes. The first is purely descriptive and concerns the
a posteriori individual evaluation of the classification rules. The second
usage, considered for instance by Zighed and Rakotomalala [15], relies
upon the intensity of implication to define the conclusion in each leaf of
the induced tree.

1 Introduction

Implicative statistics has been introduced by the French mathematician Gras
[6, 8, 9] as a tool for data analysis and has, more recently, been exploited for
deriving valuable interestingness measures for association rules of the form “If
A is observed, then we are very likely to observe B too” [3, 5, 10, 14]. The
basic idea behind implicative statistics is that the fewer counter-examples a
statistically observed relationship admits, the more implicative it is. It states
also that a rule is irrelevant when the observed number of counter-examples
exceeds the number expected in case of independence between the premise and
the conclusion. Though, as we will show, this concept of strength of implication
is applicable in a straightforward manner to classification rules for instance,
only little attention has been paid to this appealing idea in the framework of
supervised learning.

The aim of this paper is to discuss the scope and limits of implicative statis-
tics for supervised classification and especially for classification trees. Section 2
shows how Gras’ implication indexes can be applied to classification rules de-
rived from an induced decision tree. It proposes alternatives to Gras’ index
inspired from residuals used in the modeling of multiway contingency tables.
Section 3 discusses the use of implication strength for the individual validation
of each classification rule, while Section 4 shows that the implication strength
provides a useful alternative to the majority rule for selecting the most relevant
conclusion in a leaf. Section 5 proposes concluding remarks and perspectives of
development.



2 Classification trees and implication indexes

For our discussion, we consider a fictional example where we are interested in
predicting the civil status (married, single, divorced/widowed) of individuals
from their sex (male, female) and sector of activity (primary, secondary, tertiary).
The civil status is the outcome or response variable, while sex and activity
sector are the predictors. The data set is composed of the 273 cases described
by Table 1.

Table 1. The illustrative data set

Civil status Sex Activity sector Number of cases
married male primary 50
married male secondary 40
married male tertiary 6
married female primary 0
married female secondary 14
married female tertiary 10
single male primary 5
single male secondary 5
single male tertiary 12
single female primary 50
single female secondary 30
single female tertiary 18
divorced/widowed male primary 5
divorced /widowed male secondary 8
divorced /widowed male tertiary 10
divorced/widowed female primary 6
divorced /widowed female secondary 2
divorced /widowed female tertiary 2

2.1 Trees and rules

Classification trees induce classification rules from data in two steps. First, the
tree is grown by seeking, through recursive splits of the learning data set, some
optimal partition of the predictor space for predicting the outcome class. Each
split is done according to the values of one predictor. The process is greedy.
It starts by trying all predictors to find the “best” split of the whole learning
data set. Then, the process is repeated at each new node until some stopping
rule is reached. In a second step, once the tree is grown, classification rules are
derived by choosing the most relevant value, usually the majority class, in each
leaf (terminal node) of the tree.

Figure 1 shows the tree induced with the CHAID method [11], a 5% signifi-
cance level and a minimal node size fixed to 20. The same tree is obtained with
CART [4] and a minimal .02 gain value. The tree partitions the predictor space
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Fig. 1. Example: Induced tree for civil status (married, single, divorced/widowed)

into groups such that the distribution of the outcome variable, the civil status,
differs as much as possible from one group to the other. For our discussion, it
is convenient to represent the four resulting distributions into a table that cross
classifies the outcome variable with the set of profiles (the premises of the rules)
defined by the branches. Table 2 is thus associated to the tree of Figure 1.

Classification rules are usually derived from the tree by assigning the majority
class of the leaf to the branch that leads to it. For example, a man working in
the secondary sector belongs to leaf 3 and will be classified as married, while
a man of the tertiary sector (leaf 4) will be classified as single. In Table 2, the
column headings define the premises of the rules, the conclusion being given, for
each column, by the row containing the greatest count. The tree defines thus the
four following rules:

R1: Man of primary or secondary sector = married
R2: Man of tertiary sector = single
R3: Woman of primary sector = single
R2: Woman of secondary or tertiary sector = single

Classification rules as compared with association rules have the following
characteristics: 1) Their conclusions can only be values (classes) of the outcome
variable, and ii) the premises of the rules are mutually exclusive and define a
partition of the predictor space. Anyway, they are rules and we can then apply

Table 2. Table associated to the induced tree

Man ‘Woman
primary or secondary
Civil Status secondary  tertiary primary  or tertiary Total

Married 6 0 24 120
Single 10 120
6 4

Div./Widowed 13 10 33
Total 113 28 56 76 273




to them concepts such as support, confidence and, which is here our concern,
implication indexes.

2.2 Counter-examples and implication index

The index of implication [see for instance 7, p. 19] of a rule is defined from the
number of counter-examples, i.e. of cases that verify the premise but not the
conclusion. In our case, it is in each leaf (column of Table 2) the number of cases
that are not in the majority class. Letting b denote the conclusion (row of the
table) of rule j and ny; the maximum in the jth column, the number of counter-
examples is ng; = n.;—nyp;. The index of implication is a standardized form of the
deviation between this number and the number of counter-examples expected
when assuming that the distribution of the outcome values is independent of the
premise.

Formally, the independence hypothesis Hy states that the number Nj; of
counter-examples of rule j results from a random draw of n.; cases. Under Hy,
letting np./n be the marginal proportion of cases in the conclusion class b of
rule j, Nj; follows a binomial distribution Bin(n ;,ns./n), or, when n ; is not

fixed a priori, a Poisson distribution with parameter n¢. = ng.n.;/n [12]. In the
j

latter case, the parameter nj is both the mathematical expectation E(Ng; | Ho)
and the variance var(Ny; | Ho) of the number of counter-examples under Hy.
It is the number of cases in leaf j that would be counter-examples if they were
distributed among the outcome classes with the marginal distribution, i.e. that
of the root node (right margin in Table 2).

Gras’ implication index is the difference ng; —ng . between the observed and
expected numbers of counter-examples, standardized by the standard deviation,
i.e., if we retain the Poisson model,

_ e
nbj —Nn;.

Imp(j) = ———= , (1)
which can also be expressed in terms of the number of cases verifying the rules
as Tp(j) = —(ms; — nf,)/ /7y = 715

Let us explicit the calculation of the index for our example. We consider
for that the variable “predicted class”, denoted cpred, that takes value 1 for
each case (example) belonging to the majority class of its leaf and 0 otherwise
(counter-example). By cross-classifying this variable with the premises of the
rules, we get Table 3 where the first row gives for each rule its number ng; of
counter-examples and the second row its number n;; of examples.

Likewise, Table 4 gives the expected numbers ngj and ng ¢ of counter-examples
and examples obtained by distributing the n;. covered cases with the marginal
distribution. Note that these counts cannot be computed from the margins of Ta-
ble 3. They are obtained by first dispatching the column total using the marginal
distribution of Table 2 and aggregating then separately each resulting column



Table 3. Observed numbers ng; and np; of counter-examples and examples

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary Total
0 (counter-example) 23 16 6 28 73
1 (example) 90 12 50 48 200
Total 113 28 56 76 273

Table 4. Expected numbers ngj and np; of counter-examples and examples

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary Total
0 (counter-example) 63.33 15.69 31.38 42.59 153
1 (example) 49.67 12.31 24.62 33.41 120
Total 113 28 56 76 273

according to its corresponding observed majority class (not the expected onel!).
This explains why Tables 3 and 4 do not have the same right margin.

From these two tables, we get easily the implication indexes using formula (1).
They are reported in the first row of Table 5. For the first rule, the index equals
Imp(1) = —5.068. This negative value indicates that the number of observed
counter-examples is less than the number expected under the independence hy-
pothesis, which stresses the relevance of the rule. For rule 2, the implication
index is positive, which tells us that the rule is irrelevant since it generates more
counter-examples than classifying without taking account of the condition.

2.3 Implication index and residuals

In its formulation (1), the implication index looks like a standardized residual,
namely as the (signed root square of) the contribution to the Pearson Chi-square
[see for example 1, p 224]. Here, it is indeed the Chi-square that measures the
divergence between Tables 3 and 4. These contributions are depicted in Table 5,
those of the first row being the implication indexes.

This interpretation of Gras’ implication index in terms of residuals (residuals
for the fitting of the counts of counter-examples by the independence model)
suggests that other forms of residuals used in the framework of the modeling of

Table 5. Contributions to the Chi-square measuring divergence between Tables 3 and 4

Man Woman
Predicted class primary or secondary
cpred secondary tertiary primary or tertiary
0 (counter-example) -5.068 0.078 -4.531 -2.236

1 (example) 5.722 -0.088 5.116 2.525




Table 6. The various residuals as alternative implication indexes

Residual Rule R1 Rule R2 Rule R3 Rule R4
standardized (=Imp(y)) ress -5.068 0.078 -4.531 -2.236
deviance resq -6.826 0.788 -4.456 -4.847
Freeman-Tukey TeSFT -6.253 0.138 -6.154 -2.414
adjusted resq -9.985 0.124 -7.666 -3.970

the counts in multiway contingency tables could also prove useful for measuring
the strength of rules. These include:

The deviance residual, resq(j) = sign(ng; — ngj)\/\Qn,;j log(nl;j/ngjﬂ, which is

the signed square root of the contribution (in absolute value) to the likelihood
ratio Chi-square [2, pp 136-137]).

Haberman’s adjusted residual, res,(j) = (np; — ngj)/\/ngj(nb./n)(l —n.j/n),

which is the Pearson standardized residual divided by its standard error [1,
p 224].
Freeman-Tukey’s residual, respr(j) = Vg /T +ng; — /4n§j + 1, which

results from a variance-stabilizing transformation [2, p 137].

Table 6 exhibits the values of theses alternative implication indexes for each
of our four rules. We observe that they are concordant as expected. The stan-
dardized residual is known to have a less than unity variance. This is because the
counts ny. and n.; are sample dependent and hence themselves random. Thus ngj
is only an estimation of the Poisson parameter. Ignoring the randomness of the
denominator in formula (1) leads to underestimate the strength. The deviance,
adjusted and Freeman-Tukey’s residuals are best suited for this situation and are
known to have in practice a distribution closer to the standard normal N(0,1)
than the simple standardized residual. We can check in our example that the
standardized residuals, i.e. Gras’ implication index tends to give lower absolute
values than the three alternatives. The only exception is rule R3 which admits
only 6 counter-examples.

2.4 Implication intensity and p-value

In order to evaluate the statistical significance of the computed implication
strength, it is natural to look at the p-value, i.e. at the probability p(Ngj <
ng; | Ho). When g is small, this probability can be obtained, conditionally
on np. and n.;, with the Poisson distribution P(ngj). For large ny;, the normal
distribution gives a good approximation. A correction for the continuity may
be necessary however, the difference mighting be for example as large as 2.6
points of percentage when ngj = 100. Letting ¢(.) denote the standard normal

distribution, we have p(Ng; < ng; | Ho) ~ ¢<(n5j +0.5— ngj)/ nlf;j) .



Table 7. The implication intensity and its variants (with continuity correction)

Residual Rule R1 Rule R2 Rule R3 Rule R4
standardized ress 1.000 0.419 1.000 0.985
deviance resq 1.000 0.099 1.000 1.000
Freeman-Tukey resgrT 1.000 0.350 1.000 0.988
adjusted resq 1.000 0.373 1.000 1.000

The implication intensity is defined as the complementary to one of this p-
value. Gras [see for instance 7] defines it in terms of the normal approximation,
without the correction for continuity however. We compute it as

Intens(j) =1 — gb((ngj +0.5 —ng;)/ n%j.) . (2)

Anyway, this intensity can be interpreted as the probability of getting, under
the independence hypothesis Hy, a higher number of counter-examples than the
count observed for rule j. Table 7 gives these intensities for our four rules. It
shows also the complementary to 1 of the p-values of the deviance, adjusted
and Freeman-Tukey’s residuals computed with the continuity correction, i.e. by
adding 0.5 to the observed counts of counter-examples.

3 Individual rule relevance

The implication intensity and its variants are naturally useful for validating
each classification rule individually. This knowledge enriches the usual global
validation of the classifier. For example, among the four rules issued from our
illustrative tree, rules R1, R3 and R4 are clearly relevant, while R2, with an
implication intensity below 50% should clearly be rejected.

The question is then what shall we do with the cases covered by the conditions
of irrelevant rules. Two solutions can be envisaged: i) Merging cases covered by
an irrelevant rule with another rule, or ii) changing the conclusion. The possible
choice of a more suitable conclusion is discussed in Section 4. As for the merging
of rules, if we want to respect the tree structure we have indeed to merge cases of
a leaf with those of a sister leaf, which is equivalent to pruning the corresponding
branch. In our example, this leads to the merge of rules R1 and R2 into a new
rule “Man = married”. Residuals for the number of counter-examples of this new
rules are respectively res; = —3.8, resq = —7.1, respr = —4.3 and res, = —8.3.
Except for the deviance residual, they exhibit a slight deterioration as compared
to the implicative strength of rule R1.

It is interesting here to compare the implicative quality with the usual error
rate used for validating classification rules. The number of counter-examples
considered is precisely the number of errors produced by the rule on the learning
set. The error rate is thus the percentage of counter-examples among the cases
covered by the rule, i.e. err(j) = ng;/n.;, which is also equal to 1 — ny;/n.;, the
complementary to one of the confidence. The error rate suffers that from the



Table 8. Implication index penalized for the rule complexity

Rule resq In(n;) k; Imp,,,,
R1 -6.826 4.727 2 -3.75
R2 0.788 3.332 2 3.37
R3 -4.456 4.025 2 -1.62
R4 -4.847 4.331 2 -1.90
Man =- married -7.119 4.949 1 -4.89
Woman =- single -7.271 4.883 1 -5.06

same drawbacks as the confidence. For instance, it does not tell us how better
the rule does than a classification independent of any condition. Furthermore,
the error rate is linked with the choice of the majority class as conclusion. For
our example, the error rate is respectively for our four rules 0.2, 0.57, 0.11 and
0.36. The second rule is thus also the worst from this point of view. Comparing
with the error rate at the root node, which is 0.56, shows that this rate of 0.57
is very bad. Thus, for being really informative about the relevance of the rule,
the error rate should be compared with the error rate of some naive baseline
rule. This is exactly what the implication index does. Resorting to implication
indexes, we get in addition probabilities which permits to distinguish between
statistically significant and non significant relevance.

Practically, in order to detect over-fitting, error rates are computed on vali-
dation data sets or through cross validation. Indeed, the same can be done for
the implication quality by computing the implication indexes and intensities in
generalization.

Alternatively, we could consider, in the spirit of the BIC (Bayesian infor-
mation criteria) or MDL (Minimum message length) principle, to penalize the
implication index by the complexity of the condition. Since the lower the im-
plication index of a rule j, the best it is, the index should be penalized by the
length k; of the branch that defines the condition of rule j. The general idea
behind such penalization is that the simpler the condition, the lower the risk to
assign a bad distribution to a case. As a first proposal we suggest the following
penalized form inspired from the BIC [13] and based on the deviance residual

Imp,,.,,(7) = resa(j) + 1/ k; In(ny) .

For our example, the values of the penalized index are given in Table 8.

This penalized form of the index confirms the ranking of the initial rules,
which here have all the same length £; = 2. In addition, it is useful for validating
the merge of the two rules R1 and R2. Table 8 highlights the superiority of the
merged rule “Man = married” over both rules R1 and R2. It gives a clear signal
in favor of the merge.

At the root node, both the residual and the number of conditions are zero.
Hence, the penalized implication index is zero too. Thus, a positive penalized
implication index suggests that we can hardly expect that the rule would do bet-



Table 9. Implication indexes and intensities of rule 2 for each possible conclusion

Indexes Intensity
Residual married single  div./wid. married single  div./wid.
Standardized ress 1.6 0.1 -1.3 0.043 0.419 0.891
Deviance resq 3.9 0.8 -3.4 0.000 0.099 0.999
Freeman-Tukey respr 1.5 0.1 -1.4 0.054 0.398 0.895
Adjusted resq 2.4 0.1 -2.0 0.005 0.379 0.968

ter in generalization than a random classification independent of any condition.
For our example, this confirms once again the badness of rule R2.

4 Implication strength versus majority rule

A final aspect regarding the implication strength is its link with the choice of
the conclusion for each rule. The idea, that has for instance been exploited in
[15, pp 282-287], is to chose in each leaf the conclusion for which the rule gets its
highest implication intensity. This is indeed an alternative to the majority rule.

To illustrate, we give in Table 9 the values of the alternative indexes and
intensities of implication for each of the three possible conclusion that may be
assigned to rule 2. The conclusion labeled “single” corresponds to the majority
class. We see here that there is a better conclusion from the strength of implica-
tion standpoint, namely “divorced or widowed”. All four indexes designate this
conclusion as the best with an implication intensity that goes from 89.1% for
Gras’ index to 99.9% for the deviance residual. Again we can notice that Gras’
index seems to slightly under-estimate the implication intensity.

5 Conclusion

The aim of the paper was to demonstrate the usefulness of the concept of impli-
cation strength for classification rules derived from induced decision trees. We
have shown that it may prove helpful for evaluating the individual relevance of
rules as well as an alternative to the majority class rule for selecting the rule
conclusion. We have also stressed the interest of considering implication indexes
penalized for the complexity.

Much remains to be done. The variants to Gras’ index, the continuity correc-
tions, the penalized index all would merit further theoretical as well as empirical
study of their impact in real word problems. In Section 4, we have stressed the
interest of the implication strength approach for selecting the most appropriate
conclusion for each leaf. We should even be able to go further and use criteria
based on implication indexes in the tree growing process. An other important
issue that we plan to investigate is the relationship between the individual per-
formance of the rule and the global classifier efficiency.
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