
Converting between various sequence
representations

Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

Abstract This chapter is concerned with the organization of categorical sequence
data. We first build a typology of sequences distinguishing for example between
chronological sequences and sequences without time content. This permits to iden-
tify the kind of information that the data organization should preserve. Focusing then
mainly on chronological sequences, we discuss the advantages and limits of differ-
ent ways of representing time stamped event and state sequence data and present
solutions for automatically converting between various formats, e.g., between hori-
zontal and vertical presentations but also from state sequences into event sequences
and reciprocally. Special attention is also drawn to the handling of missing values
in these conversion processes.

Key words: Sequence data organization, State sequence, Event sequence, Transi-
tion, Converting between sequence formats.

1 Introduction

Categorical sequence data appear in many different fields. We encounter for instance
word or letter sequences in text mining, protein or DNA sequences in biology, func-
tioning state sequences in device control, sequences of successively visited web
pages in web log analysis and biographical data describing life trajectories in so-
cial sciences. There are also multiple ways of analysing such data: Markov chain
models and their extensions for analysing transitions between states, data-mining-
based methods for discovering regular patterns in sequences, aligning techniques for
finding component similarities, edit based distances for measuring proximities be-
tween sequences, survival analysis for studying time-to-event distributions to men-

G. Ritschard, A. Gabadinho, M. Studer and N. S. Müller
Department of Econometrics and Laboratory of Demography, University of Geneva, Switzerland,
e-mail: gilbert.ritschard@unige.ch

1

2 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

tion just a few of them. Now, depending on how data were collected, longitudinal
and more generally sequential data may be organized in many different manners. On
the other hand, when it comes to analysis, each software and method requires data
to be inputted in some specific form. For instance, the mining of frequent sequential
pattern is usually intended for event sequences, Markov models and edit-distance-
based methods work on state sequences, while discrete survival models need data in
person-period form. The end-user, and especially the end-user who wants to com-
bine different types of analyses thus faces the difficult and often discouraging task
of transforming his data in the right form.

The aim of this chapter is to help the analyst in this data preparation task. We
propose a systematic description of the different ways sequential data can be orga-
nized, which should help to identify the nature of the data at hand. We then discuss
issues raised by the transformation of one type of organization into another one. We
explain why some of these transformations can be done straightforwardly in an au-
tomatic way, while others may require the user to define some rules to ensure that
the outcome best suits her/his needs. We describe the automatic and semi-automatic
procedures for switching from one type of organization to the other.

Our primary interest is in sequential data describing life courses, that is in se-
quences with order determined by the time. Hence, we shall indeed also pay atten-
tion to the time content, that is to the different ways of accounting for time, essen-
tially calendars for defining time stamps and clocks for measuring time spans and
spell durations. We adopt however on this aspect a practical standpoint as opposed
to the logical definition of time concepts that can be found for instance in Hobbs
and Pan [6].

This chapter is, as far as we know, the first attempt to present a general system-
atic view of the different ways of organizing and reorganizing time sequenced data.
Karweit and Kertzer [7] discussed some aspects of the organization and conceptual-
ization of life course data, but they mainly focused on data storage and access issues
and the characterization of the units of analysis in terms of case and time. Sequence
data organization issues have indeed been considered in the literature, but most of-
ten for a specific task only as Zaki [11] who describes in details an efficient way
of organizing data for mining frequent sequence patterns or Blossfeld et al. [2] who
discuss data organization for event history analysis.

The remainder of the chapter is organized as follows. In section 2 we define the
different kinds of discrete sequences. A comprehensive list of sequence formats is
presented in Section 3 and Section 4 is devoted to the handling of missing values.
Then, in Section 5 we discuss the conversion between formats proposing among
others rough basic solutions for automatically converting between state and event
sequence data. Section 6 shortly comments on the implementation of the proposed
solutions in our TraMineR package for R and Section 7 presents a few concluding
remarks.

Converting between various sequence representations 3

2 Sequence concepts

We consider sequences of discrete or categorical data. Formally, we define thus a se-
quence of length k as an ordered list of k elements successively chosen from a finite
set A. The set A is called the alphabet. A natural representation of a sequence x is by
listing the successive elements that form the sequence, for example as a sorted list
x = (x1,x2, . . . ,xk), with x j ∈ A. When there is no ambiguity, we can just concate-
nate the successive values into a string, x = x1x2 . . .xk. A separator would indeed be
necessary when the alphabet includes any non-single symbol, which happens if we
use for instance M for married and MC for married with a child.

Now, the nature of the sequence, that is its information content, depends on

1. what the position j in the sequence refers to;
2. the nature of the elements that compose the alphabet.

Regarding the position of each element in a sequence, it is important to distin-
guish between sequences with a time dimension and those without any reference
to time. An occupational trajectory, a buyer’s history, or a record of device control
signals typically contain chronologically sorted elements and, hence, have a time
dimension. On the other hand, the order in texts and DNA sequences does not refer
to time. In the latter case, i indicates simply the rank position, while j may bear
more information when time matters. For instance, when data are collected at pe-
riodic dates as with panel data, the positions correspond to pre-specified dates (or
periods). In that case, the position j informs about the date and a difference between
positions can be interpreted as a duration.

Concerning the second point, namely the nature of the elements in the alphabet,
an important distinction to make is whether the elements are states or whether they
represent events. A state lasts as long as nothing happens, i.e. during some interval
time, while an event happens at a given time point and may cause a change of state.
For instance, consider a device turned on at 9 for 3 hours, and turned off after that.
We may either report the sequence of states at each hour, e.g., “off at 8, on at 9, on at
10, on at 11, off at 12”, or alternatively report the sequence of on-off events, that is
“turns on at 9, turns off at 12”. This can indeed also be done for non-chronological
sequences such as the sequence of nucleotides “AGGC”. Here we could say that we
start with ‘A’, switch to ‘G’ at position 2 and then to ‘C’ at position 4.

Table 1 Types of sequences

Time Dimension
Alphabet No Yes
States or objects sequence of labels state sequence
Events or transitions sequence of transitions between labels event sequence

This preliminary discussion leads us to distinguish the four types of sequences
depicted in Table 1. Notice that though an event can just be a transition between two
successive states of a chronological sequence, a transition such as from ‘single’ to

4 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

‘married with a child’ for example, may be the result of more than one event, namely
here ‘marriage’ and ‘childbirth’. We discuss this issue in more details in Section 5.

For sequences with a time dimension, it is important to preserve the time infor-
mation in any attempt to change the sequence representation. Hence it is essential
to know the kind of time information the sequence holds. There exist different con-
cepts of time: instant time (‘I started a new job the 1st of December’), time interval
(‘I had a job during the whole last year’), absolute time (birth date), relative time
(age). For instance, assume we face a sequence of annual occupational statuses such
as (full time, full time, unemployed, ...). What does ‘unemployed in 2008’ mean?
Does it mean that the concerned person was continuously unemployed during the
whole year (interval time), experienced unemployment in 2008 (interval time), or
that he was unemployed at the time of observation say in December 2008 (instant
time)? In the first case, the state change at the beginning of a sequence of unemploy-
ment states clearly corresponds to a ‘falling in unemployment’ event, while in the
two latter situations, there could be alternating employed-unemployed sequences
during the same spell. Time granularity is also an issue, Data collected with a year
granularity are hardly comparable with monthly based sequences. Turning data into

Longitudinal data

States

one state per time unit t

not

several states at each t

not

not

Events

time stamped events

not

event sequence

not

not

spell duration

not

Fig. 1 Ontology of types of longitudinal data

Converting between various sequence representations 5

finer granularity can only be done through rough approximations such as by assum-
ing that the state reported for the year remains valid for all months, while the reverse
raises time aggregation issues such as how can I transform monthly sequences into
yearly sequences?

Another important point for characterizing a sequence is whether or not it can
admit multiple elements at a same position. This is clearly a concern for event se-
quences, where multiple events (e.g., leaving home and getting married) may occur
at a same time. For state sequences, we would get multiple states at a same position
when we deal simultaneously with different dimensions such as the cohabitational
and occupational statuses, i.e., when we have non exclusive states. The latter kind
of sequence is sometimes referred to as multichanel sequence [5]. The Aristotelean
tree of Figure 1 can be seen as a tentative ontology of longitudinal data types, that
is types of sequential data with time content.

3 Basic Sequence Formats

This Section discusses different ways of representing sequence data. We explicit in
each case the nature of the represented sequence elements as well as how time is
accounted for when it matters.

3.1 Horizontal sequence organizations

We consider first representations in which sequences are organized in row (record)
form, that is with the position in the sequence determined by a column index.

State sequence (STS)

We defined a sequence as an ordered list of k elements. A natural way of represent-
ing this list is as a (row) vector of k elements. For instance, by considering the states
single, S, married, M, married with a child MC and divorced D, a sequence of length
10 would look as (

S, S, S, M, M, MC, MC, MC, MC, D
)

. (1)

Using this representation, a set of n sequences would be stored in a n× k matrix in
which each column j collects the states at position j for all cases.

We get a somewhat more compact form of exactly the same information by con-
catenating the elements into a single character string using for instance the ‘-’ sepa-
rator

“S-S-S-M-M-MC-MC-MC-MC-D” .

6 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

This concatenated form should be more economical from the storage space stand-
point since it requires a single character variable.

Time information is here accounted for by assigning absolute — date — or rela-
tive — age, process duration — times to each position. For our example, assuming
that the sequence reports yearly states between ages 18 to 27 years, we assign age
labels to the position indexes:

Age 18 19 20 21 22 23 24 25 26 27
State S S S M M MC MC MC MC D .

Notice that when we have a set of sequences, the time labeling of the position index
needs just to be done once for the whole set of sequences, which is also economical
in terms of required storage space.

Distinct-state, State-permanence and State-start sequence

In our previous example, we observe the same state in consecutive positions. We
have for instance S in the three first positions. This suggests a simplified presentation
in which we cite only one of several same consecutive states. This distinct-state-
sequence (DSS) representation of our sequence is(

S, M, MC, D
)

.

It preserves the state sequencing, but clearly all time and more generally alignment
information is lost.

We can, however, easily reintroduce it by assigning a time or duration stamp
to each element of a DSS sequence. Aassve et al. [1], for instance, stamp each
state with the number of times it is repeated and call the resulting format State-
permanence-sequence. We denote it as SPS. For our example, the SPS form is:(

(S,3) (M,2) (MC,4) (D,1)
)

.

We can indeed use any other notation for representing the (state, duration) couples,
such as

(
S/3, M/2, MC/4, D/1

)
.

An alternative possibility, that we call state-start-sequence (SSS), consists in
stamping states with start time instead of duration.(

(S,18) (M,21) (MC,23) (D,27)
)

.

Notice that strictly speaking SPS and SSS formats do not reproduce exactly the
content of the corresponding STS form. With SPS data, we would need also the start
time of the sequence, while for data in the SSS form we should specify either the
end time or the duration of the last state.

Converting between various sequence representations 7

Table 2 Sequence data representations

Code Data type (S)tates or
(E)vents

Several rows
for a same case Usage examples

STS State-sequence S No Markov modeling, OM
SPS State-permanence S No Markov modeling, OM
SSS State-start S No Markov modeling, OM

SRS Shifted-replicated-
sequence S Yes Mobility tree

DSS Distinct-state-sequence S No OM without time reference
SPELL Spell S Yes Survival analysis
PPER Person-period S Yes Discrete survival analysis
FCE Fixed-column-event E No Survival analysis

HTSE Horizontal
time-stamped-event E No Event sequence mining

TSE Vertical
time-stamped-event E Yes Event sequence mining

OM stands for optimal matching and other analyses based on dissimilarities between pairs of sequences.

Shifted-replicated-sequence

This data presentation is intended for analyses where the concern is the transition
from the states observed at previous time points, t−1, t−2, . . ., to the one observed
at time t. Consider for example the sequence A,A,C,D,D where the first element in
the sequence corresponds to year 2000 and the last one to year 2004, that is

2000 2001 2002 2003 2004
A A C D D .

The shifted-replicated-sequence representation of this sequence is obtained by re-
peating each sequence k− 2 times, shifting it each time one step on the right and
dropping at each ith step the i right most elements out:

t−4 t−3 t−2 t−1 t
A A C D D
. A A C D
. . A A C
. . . A A .

Finally, we relabel the columns with the relative time labels t− k +1 to t.
In this SRS form we collect for instance in the columns named ‘t−1’ and ‘t’ all

consecutive subsequences of length two, and hence all observed transitions between
two successive positions. The column t− i gives the state found i positions before
the state reported in the last column t. The column reference is no longer a given
date or age, but is relative. This organization of the data is for example required for
growing mobility trees [9].

8 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

Table 3 Sequence data representations: Examples (Code explanation in Table 2)

Code Example

STS
Id 18 19 20 21 22 23 24 25 26 27

101 S S S M M MC MC MC MC D
102 S S S MC MC MC MC MC MC MC

SPS
Id 1 2 3 4

101 (S,3) (M,2) (MC,4) (D,1)
102 (S,3) (MC,7)

SSS
Id 1 2 3 4

101 (S,18) (M,21) (MC,23) (D,27)
102 (S,18) (MC,21)

SRS

Id t−9 t−8 t−7 t−6 t−5 t−4 t−3 t−2 t−1 t
101 S S S M M MC MC MC MC D
101 . S S S M M MC MC MC MC
101 . . S S S M M MC MC MC

:
101 S S
102 S S S MC MC MC MC MC MC MC
102 . S S S MC MC MC MC MC MC

:

DSS
Id 1 2 3 4

101 S M MC D
102 S MC

SPELL

Id Index From To State
101 1 18 20 Single (S)
101 2 21 22 Married (M)
101 3 23 26 Married w Children (MC)
101 4 27 27 Divorced (D)
102 1 18 20 Single (S)
102 2 21 27 Married w Children (MC)

PPER

Id Index Age State
101 1 18 Single (S)
101 2 19 Single (S)
101 3 20 Single (S)
101 4 21 Married (M)

: : :
101 10 27 Divorced (D)
102 1 18 Single (S)

: : :

FCE
Id #marr. 1st marr. 2nd marr. · · · #child. 1st child 2nd child · · ·

101 1 21 . . 2 23 26 .
102 1 21 . . 1 21 . .

HTSE
Id 1 2 3 · · ·

101 (marriage, 21) (childbirth, 23) (childbirth, 26) (divorce, 27)
102 (marriage, 21) (childbirth, 21)

TSE

Id Time Event
101 21 Marriage
101 23 Childbirth
101 26 Childbirth
101 27 Divorce
102 21 Marriage
102 21 Childbirth

Converting between various sequence representations 9

3.2 Vertical sequence organizations

We now consider representations in which the elements of the sequence are given
in successive rows. Such data representation is for instance especially useful for
discrete time survival analysis [10].

Person-period data

The Person-period (PPER) data form is obtained by defining a separate record for
each period lived by each individual. The person-period representation of a single
sequence can be seen as the transpose of its STS form. In PPER form however,
the set of sequences is arranged in a single column by laying the sequences on
top of each other. One advantage of this representation is that it allows to handle
time varying covariates in a straightforward manner by simply completing the data
with columns giving the values of the covariates for each considered time (row).
A second advantage is that, unlike the STS form, it does not require all sequences
to have the same start and end times. Periods not observed for a given case can be
simply omitted. The price to pay for these advantages, especially the last one, is
that in the PPER format the concerned period must be explicitly specified for each
record. Here is the PPER format of our earlier example (1):

Id Index Age State
101 1 18 Single (S)
101 2 19 Single (S)
101 3 20 Single (S)
101 4 21 Married (M)
101 5 22 Married (M)
101 6 23 Married w Child (MC)
101 7 24 Married w Child (MC)
101 8 25 Married w Child (MC)
101 9 26 Married w Child (MC)
101 10 27 Divorced (D) .

Spell data

The Spell data (SPELL) organization is a compacted person-format form that uses a
single record for representing successive periods with unchanged state. For a given
sequence, it can be seen as the transpose of either the SPS (state-permanence) or SSS
(state-start) format. As with the PPER format, however, in Spell form the sequences
are stacked and not laid one beneath each other. Each record should indeed specify
either the start and end times of the spell, or equivalently its start time and duration.
Notice that if we can assume, what is not too restrictive, that each spell ends when
the next one starts, then it would be sufficient to give the start time only (or the
duration only) of each spell. The SPELL format of example (1) looks as follows

10 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

Id Index From To State
101 1 18 20 Single (S)
101 2 21 22 Married (M)
101 3 23 26 Married w Children (MC)
101 4 27 27 Divorced (D) .

3.3 Event sequences

The format discussed so far are primarily intended for state sequences. States are
supposed to last and are naturally associated with interval time. Here we consider
events, that is phenomenons that occur at given time-points and do not last. For
instance, starting a new job, getting married and switching a device off are events.
They may result in a lasting new state, but events do not persist themselves. Hence,
it is in time reference that the representation of a sequence of events will differ from
state sequences.

As long as we are only interested in the sequencing of the events, we may rely
on STS like or DSS representations. State-permanence has indeed no sense for non
lasting events. Likewise, spell representation are not suited for event data. The most
common way of representing event sequences is as time-stamped-event either hori-
zontally or vertically.

Horizontal time stamped events

There are two possibilities for presenting time-stamped-event data horizontally. The
first is similar to the STS form, with the dates at which events occur as column
headings. This may be justified when events occur at the same regular dates for
each case. Most often, however, a sequence of time stamped events is represented
by a sequence of (event, time stamp) couples. We call this format horizontal-time-
stamped-event (HTSE). For instance, if we consider the events defined by the state
transitions of our state sequence example plus a second childbirth at 26, we would
write down the data as

((starts as single,18) (marriage,21) (childbirth,23) (childbirth,26) (divorce,27)) . (2)

Notice that it is most often necessary to specify the state at the start of the observed
period if we want to retrieve the whole state information from the sole knowledge
of the events.

When events are repeatable, such as “starting a new job”, “childbirth” or “turning
a device on”, it may be useful to know the rank of the event. In such cases, a some-
time more convenient representation consists in grouping the events and reporting
the number of events of a certain type, let us say the number of childbirths, and then
list the successive time stamps of the events in fixed columns. We call this form
fixed-column-event (FCE). For instance, the childbirth information of our previous

Converting between various sequence representations 11

example would look as follows in FCE format

Number of Age at Age at Age at
id childbirths 1st childbirth 2nd childbirth 3rd childbirth · · ·
101 2 23 26 NA · · · .

Biographical data bases are often presented this way with for instance dates of
changes in living arrangement, marital status, number of children, education and
professional careers. It is convenient for survival methods such as for instance the
estimation of a Kaplan-Meier curve, since it permits to easily compute the required
duration from a start event until the event of interest. The disadvantage is that it may
result in a very scarce table with plenty of empty entries.

Vertical time stamped events

As for state sequences, event sequences can indeed also be organized vertically by
reporting each (event, time stamp) couple in a new line. We designate this vertical-
time-stamped-event simply as TSE. Here is how our example looks out in this TSE
format

id index time event
101 1 18 Start as single
101 2 21 Marriage
101 3 23 Childbirth
101 4 26 Childbirth
101 5 27 Divorce .

In this format, two simultaneous events, that is events with same time stamp such
as (Marriage, 25) and (Childbirth, 25) would be represented by two lines. A variant
sometime considered consists in giving the time stamp with the list of events in a
same single line

id index time event
102 1−2 25 Marriage, Childbirth .

4 Missing values

Before discussing how we can convert between formats, a few words are worth
about how to record missing elements in sequences. Depending on where they ap-
pear in sequence, we distinguish the following types of missing values:

• left-missing-values, that is missing values appearing before the first valid entry
in the sequence;

• inner-missing-values or gaps, that is missing values appearing somewhere be-
tween the first and last valid entries;

• right-missing values, that is missing values appearing after the last valid entry.

12 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

The distinction is important for time referenced sequences, where each type may
result from different reasons and may require different handling. For instance, left-
missing-values may occur with sequences that do not start at the same time, right-
missing-values when sequences are of different lengths, and gaps when we missed
the observation at some date. In the first case we may want to align the beginning of
the sequences, preferring for instance an age or process time to a calendar time. On
the other hand, right-missing-values corresponding to truncation could be simply
ignored, while for gaps the treatment may depend on whether or not it is important
to preserve the time alignment across sequences. These are indeed just examples, the
specific treatment of each type of missing values will indeed depend of whether the
analysis method we envisage to use supports missing values, and if yes which kind
it supports. For instance, a missing element will have less dramatic consequences
for running methods for event sequences than methods for state sequences.

Beside radical list wise deletion solutions, basic handling of missing values in-
clude:

• deleting them from the sequence, which implies shifting one position to the left
all elements appearing on the right side of the missing value;

• maintaining missing values at their place, and using special treatments for them
during the analysis stage;

• completing the alphabet with a “missing” term, i.e., treat missing values as if
they were normal elements of the sequence;

• missing data imputation using for instance techniques for microarrays [3] or for
repeated measures [8].

It is behind the scope of this chapter to discuss the handling of missing values for
specific types of analysis. Nevertheless, it is important to have the distinctions made
above into the mind when we want convert data into a new format.

5 Transforming between Formats

When converting from one format into the other we usually want to preserve the
information. This should not be a problem when turning a state sequence format into
another state sequence format, as well as when converting between event sequence
formats. The transformation of states into events and vice-versa is more complicated
and requires additional information from the user. This section addresses some of
the issues raised by format conversions.

5.1 Converting between state sequence formats

Conversion between STS (state-sequence), SPS (state-permanence), SSS (state-
start) and SRS (shifted-replicated) horizontal formats of state sequences is straight-

Converting between various sequence representations 13

Table 4 Feasible automatic and semi-automatic conversions

From/To STS SPS SRS PPER SPELL DSS TSE HTSE FCE
STS . A A A A A A/U A/U A/U
SPS A . A A A A A/U A/U A/U
SRS A A . A A A A/U A/U A/U
PPER A A A . A A A/U A/U A/U
SPELL A A A A . A A/U A/U A/U
DSS N N N N N . N N N
TSE A/U A/U A/U A/U A/U ? . A A
HTSE A/U A/U A/U A/U A/U ? A . A
FCE A/U A/U A/U A/U A/U ? A A .
A: automatic, U: needs user intervention, N: not possible
A/U: automatic under some conditions, otherwise needs user intervention

forward as shown from the examples in Table 3. Such conversions can easily been
automatized with a few lines of code and functions doing the job are for instance
proposed in our TraMineR package [4]. However, to get exactly the same informa-
tion, that is to make the transformation reversible, we should store separately the
start time with both SRS and duration stamped SPS formats, and either the duration
or end time of the last spell with the SSS format. For instance, from STS to SRS
we just repeatedly replicate and shift each sequence. The relabeling of the columns
with the appropriate lag length needs no further information. For the converse, that
is from SRS to STS, we just have to retain the left most aligned sequence for each
case. The relabeling of the columns with time stamps requires however here the
externally stored start time of each sequence.

Retained missing values are dealt with as other state values and need no special
attention. Conversion can be done as well when there are dropped out missing val-
ues. In case of dropped out gaps, however, the lags used in SRS and the duration
stamps in SPS will lose their meaning. To be able to restore true time or duration
stamps requires then to hold somewhere the original positions of these dropped out
missing values. Information about left and right missing values is less important,
except for the true observation start time when the duration since this start time
matters.

Transforming from an horizontal to a vertical format is almost as straightfor-
ward. PPER and SPELL are the vertical equivalents of respectively the STS and SPS
forms. Be aware, however, that left and right missing values are typically ignored in
vertical formats, i.e. they are dropped out. Hence, when we want explicitly account
for the existence of such left and right missing values, the information should be
held separately.

The distinct-states format DSS is indeed the SPS form without the time stamp
information. Hence it can automatically be obtained from any of STS, SPS, SRS,
PPER or SPELL format. The transformation is clearly not reversible however since
DSS holds no time stamped information.

14 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

5.2 Converting between event sequence formats

Conversion between event sequence formats, that is between FCE, HTSE and TSE
can also be automatized. The FCE (fixed-column-event) form requires either to de-
termine in advance the maximal number of each kind of events known by each
subject (number of marriages, number of childbirths, etc.), or to be able to insert
columns when necessary. Conversion to HTSE and TSE has no such requirement
and is therefore easier to implement.

In any of the event sequence formats, it may be useful, especially for a later
transformation into a state sequence format, to consider a “start of observation”
event together with the original state of the subject at this start time.

5.3 Conversion from state to event sequences

Transforming state data into event data as well as the converse, that is event data
into state data is less straightforward. It is easy to derive a sequence of transitions
between states from a state sequence and reciprocally states from a the transitions
between them. Transitions, however, are not equivalent to events. Let us first clarify
the distinction between them.

We define a transition as the change between two consecutive states in the se-
quence. This definition holds whether or not the sequence includes time informa-
tion. An event, on the other hand, is something that happens at a given time point
and hence makes sense for chronological sequences only. Though a transition in
a chronological sequence can be considered as an event, the two concepts are not
equivalent. The event ‘Marriage’ for instance characterizes the transition S→ M,
but participates also to the characterization of the transition S→ MC, that is‘from
‘single’ to ‘married with a child’. Assuming we have yearly data, the latter transi-
tion results when both events ‘Marriage’ and ‘Childbirth’ happen the same year, and
hence requires that the event ‘Marriage’ occurs. This example illustrates also that
a transition may reflect the conjunction of several events. Another example is the
transition S→D (single to divorced) which makes only sense when divorce follows
a marriage within the same year.

Converting state sequences into event sequences requires to specify the mapping
between transitions and events, that is to specify the events that must necessarily
happen to generate each given transition. This can be formalized by a transition-
definition matrix where we give the ‘from’ states as row labels, the ‘to’ states as
column labels, and list the joint events that characterize each transition in the corre-
sponding cell.

Table 5 shows how this matrix could look out for the transitions between the
states considered in sequence example (1). We would expect also the conversion
process to account for the state in which the sequence starts. This requires to assign
one of the events ‘starts as S’, ‘starts as M’, ‘starts as MC’ or ‘starts as D’ to the
beginning of the sequence. For convenience, we could just insert these start events

Converting between various sequence representations 15

Table 5 Example of a transition-definition matrix for state sequence (1)

From\To S M MC D

S starts as S Marriage Marriage, Childbirth Marriage, Divorce
M impossible starts as M Childbirth Divorce
MC impossible Child leaving starts as MC Divorce, Child leaving
D impossible Marriage Marriage, Childbirth starts as D

on the otherwise unused diagonal of the matrix. Using this transition-definition ma-
trix we can then automatically convert state sequences by replacing all encountered
transitions by the associated events and stamping them with the time at which the
transition occurs. A convention must however be adopted for the time stamp de-
pending on whether we assume the state reported for time unit t, say year t, is the
state at the beginning of this observed time unit or at the end of it. In the first case,
we would stamp events with the time of the ‘from’ state of the transition and oth-
erwise with that of the ‘to’ state. Adopting this latter convention for converting our
example sequence (1) we get the following event time stamped sequence(

(starts as S,18) (marriage,21) (childbirth,23) (divorce,27)
)

. (3)

Notice that this sequence differs from that of example (2), which mentions an addi-
tional childbirth that cannot be accounted for with the four sole states considered. A
state ‘MC2’, married with two children, would be necessary for that. This illustrates
the tight relationships that should exist between states and events when we want to
get state and event representations holding exactly the same information.

The designing of the transition-definition matrix belongs to the user, which pre-
vents the conversion process to be fully automatized. As shown by the above small
example, it may also be an awkward task. It may therefore be useful to be able
to automatically generate some rough transition-definition matrix. Even when not
completely relevant, such a matrix could serve as a start point for the design pro-
cess. It could also be used as is for applying quickly tentatively methods of event
sequence analyses on data presented in state sequence formats. We propose here-
after two such rough automatic methods.

A first method that we call ‘Transition’, consists in considering each observed
transition as a simple event. The transition-definition matrix generated from our
example sequence is given in Table 6.

The second method named ‘End-Begin’ assigns two events to each transition,
namely the end of the ‘from’ state and the beginning of the ‘to’ state. We use the
prefixes ‘end ’ and ‘bgn ’ to denote these events in Table 7 that reports the matrix
obtained this way from our example.

The diagonal terms of the matrices should indeed not be interpreted as the other
entries. They do not stand for the transition of the corresponding state to itself,
but indicate the event that initiates sequences starting in the corresponding column
state. Remember also that the automatically generated transition-definition matrices

16 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

Table 6 Transition-definition matrix for state sequence (1) generated by the ‘Transition’ method.

From\To S M MC D

S starts as S S→M S→MC S→ D
M M→ S starts as M M→MC M→ D
MC MC→ S MC→M starts as MC MC→ D
D D→ S D→M D→MC starts as D

Table 7 Transition-definition matrix for state sequence (1) generated by the ‘End-Begin’ method.

From\To S M MC D

S bgn S end S, bgn M end S, bgn MC end S, bgn D
M end M, bgn S bgn M end M, bgn MC end M, bgn D
MC end MC, bgn S end MC, bgn M bgn MC end MC, bgn D
D end D, bgn S end D, bgn M end D, bgn MC bgn D

are just rough solutions that will most often require adjustments to suite the user’s
research objectives.

5.4 Conversion from event to state sequences

The reverse conversion from event to state sequences needs again a definition of
transitions from the events. However, we face now a different problem, the goal
being to find the a priori unknown states resulting from the successive known events.
To do that, we assume that a state transition can only occur when an event happens
and that the state at each time position t depends uniquely of the events that occurred
before t, including indeed the sequence initiating event. Under these hypotheses the
successive states can be determined recursively from the event sequence. The first
state is defined by the initiating event, which means that we have to know the starting
state of the sequence. This state is then replicated for each time until the time at
which the next event happens. At this point we switch to the new state caused by the
event. We then repeat the process until we get the state generated by the last event.
When necessary, we can repeat the last state until a fixed sequence end time.

The only difficulty in implementing the process is the determination of the state
in which we fall after each event. Note that, as in a Markov chain, the ancestor state
at t summarizes all the information we need from the sequence of previous events.
The new state can be determined from the joint knowledge of the event and this
previous state. Thus, what we need is a state-definition matrix giving the resulting
new state for each (previous state, event) couple. Table 8 shows one possible matrix
for the events considered in sequences (2) and (3). To keep the example small, the
design of this matrix assumes that we are only interested in the four states S, M, MC
and D, i.e., we are not interested to distinguish among single (S) or divorced (D)
people those who live with children from those who live without children, that is
the ‘child’ distinction is supposed relevant only for married people.

Converting between various sequence representations 17

Table 8 Example of a state-definition matrix for event sequences (2) and (3)

From\Event Marriage Childbirth Divorce

S M S impossible
M impossible MC D
D M D impossible
MC impossible MC D

Once we have defined the state-definition matrix, we can proceed with converting
the event sequence into a state sequence. At each event we switch to the state found
at the intersection of the row corresponding to the ancestor state and the column
associated with the event.

As for the state to event conversion, we may imagine some automatic process
for generating a basic state-definition matrix. One possibility consists in defining
the state by the set of experienced events without accounting for their order, i.e.,
by associating a state to each possible combination of events. For c different events
we would thus generate 2c possible states, including a none state that remains valid
as long as no event is experienced. Table 9 shows the state-definition matrix au-
tomatically generated from the three events considered in sequences (2) and (3).
The matrix contains a row for each of the 23 combinations of the three states. In
each row, we read the state in which we fall when the corresponding column event
happens.

Table 9 State-definition matrix for generated from the events in sequence (2) and (3)

From\Event Marriage Childbirth Divorce

none {marr} {child} {div}
{marr} {marr} {marr,child} {marr,div}
{child} {marr,child} {child} {child,div}
{div} {marr,div} {child,div} {div}
{marr,child} {marr,child} {marr,child} {marr,child,div}
{marr,div} {marr,div} {marr,div,child} {marr,div}
{child,div} {marr,child,div} {child,div} {child,div}
{marr,child,div} {marr,child,div} {marr,child,div} {marr,child,div}

This automatically generated state-definition matrix is just a rough basic solu-
tion. It may be worth to make some adjustments before using it for making the
conversion. First, it can happen that the automatic process generates some theoreti-
cally unattainable states. In our example, for instance, it makes no sense to consider
states where we have divorced without getting married, which suggests to exclude
the states {div} and {child,div}. Maintaining them would nevertheless have no con-
sequences, since we should never fall in such unattainable states. Secondly, the num-
ber of automatically generated states, which raises exponentially with the number
of events, may become too large for an efficient state sequence analysis. For exam-
ple, with c = 5 events we get 32 states, and c = 10 leads to 1024 states. The user
may then want to reduce the number of states by selecting only the more relevant of

18 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

them. A possible empirical solution — or at least an empirical guide line — could
be here to consider only states that exceed some threshold frequency for the whole
sequence data set. This would indeed also exclude unfeasible states.

An important limitation of the just described method is that a new state can only
be obtained by augmenting the set of events that defines the ancestor state. This
precludes any return to a previously visited state. We can overcome this limitation
by combining the process with an event dropping out mechanism. We define such a
mechanism by means of a binary c× c event-drop-out-matrix in which a 1 is set in
cell (i, j) to indicate that event i should be dropped out when event j happens. For
our example, we could define the matrices shown in Table 10. The left side matrix
states that a divorce cancels a previous marriage, but also that any previous divorce
will be ignored after a new marriage. In the right side matrix, we state in addition
that we should forget about any preceding childbirth when a divorce happens.

Table 10 Two possible event-drop-out-matrices

Element to Occurring event
drop out Marriage Childbirth Divorce

marr 0 0 1
child 0 0 0
div 1 0 0

Element to Occurring event
drop out Marriage Childbirth Divorce

marr 0 0 1
child 0 0 1
div 1 0 0

Using the right side matrix for the drop out mechanism in the automatic design
of the state-definition-matrix, we get Table 11. This matrix differs from the one we
defined by hand in Table 8 in that it defines specific states for people that have a
child while they are not married, namely states {child} and {child,div}.

Table 11 State-definition matrix generated with a drop-out mechanism

From\Event Marriage Childbirth Divorce

none {marr} {child} {div}
{marr} {marr} {marr,child} {div}
{child} {marr,child} {child} {div}
{div} {marr} {child,div} {div}
{marr,child} {marr,child} {marr,child} {div}
{child,div} {marr,child} {child,div} {div}

Similarly to the event-drop-out-mechanism, we can implement a ‘cancel event
effect’ mechanism that would prevent any transition after events occurring in speci-
fied states. This requires to specify a binary (c+1)×c cancel-event-matrix in which
a 1 in cell (i, j) indicates that event j should be ignored when it occurs while we are
in any state containing event i. Considering again our example, we would define the
matrix as shown in Table 12 for ignoring childbirths experienced by unmarried peo-
ple. Notice that we have here the none row for accounting for the state that prevails
while no event occurs.

Converting between various sequence representations 19

Table 12 Cancel-event-matrix for preventing transitions after childbirths for non married people

Element of Canceled event
state definition Marriage Childbirth Divorce

none 0 1 0
marr 0 0 0
child 0 0 0
div 0 1 0

Generating the state-definition matrix with both the drop-out and cancel-event-
effect mechanisms we get Table 13. If we relabel S = none, M = marr, C = child
and D = div, this matrix appears to be equivalent to our first state-definition matrix
of Table 8 except for the cells labeled as impossible. The latter have, however, no
importance since they correspond to states that will never be reached.

Table 13 State-definition matrix generated with drop-out and cancel-event mechanisms

From\Event Marriage Childbirth Divorce

none {marr} none {div}
{marr} {marr} {marr,child} {div}
{div} {marr} {div} {div}
{marr,child} {marr,child} {marr,child} {div}

The last solutions proposed are not wholly automatic since they require the user
to specify the event-drop-out and cancel-event matrices. In our experiences, the
specification of these matrices was however much simpler than the complete design
of the state-definition matrix and proved thus to be a valuable help in the conversion
process.

6 Implementation in the R environment

Most of the sequence formats discussed in this chapter are already supported by
our TraMineR package for rendering, mining and analysing sequence data in R
[4]. The package offers functions that do the automatic conversion between either
state sequence formats or between event sequence formats, as well as the conver-
sion between state and event sequences from a user provided definition matrix. The
building of rough basic transition-definition and state-definition matrices were also
implemented in the latest — currently in testing stage — release of the package.

TraMineR uses state-sequence objects and event-sequence objects. The former
store the data internally in STS form and the latter in TSE form. To avoid the mul-
tiplication of the conversion procedures, the conversion between any two state se-
quence formats, say SPS to SSS, is done by converting first to the internal STS and
then to the destination format. Likewise, the conversion between formats of event se-

20 Gilbert Ritschard, Alexis Gabadinho, Matthias Studer and Nicolas S. Müller

quences is done by passing through the TSE form. This remains indeed transparent
for the user. The transformation between state and event sequences is implemented
for a conversion between the default STS and TSE forms. As with other functions in
TraMineR, a different input format can however be specified, in which case an au-
tomatic conversion into the default format is applied before the state-event transfor-
mation. Similarly, an option allows to further transform the output in any supported
output format.

7 Conclusion

The aim of this chapter was to respond to an obvious lack in the literature of a gen-
eral reference for all questions regarding the preparation of categorical sequence
data. The comprehensive overview of the different ways of organizing discrete se-
quence data and of the possibilities to pass from one presentation to the other one
makes this chapter unique. The overview was built on our experiences in the analy-
sis of life trajectory data. The chapter presents thus also original data transformation
solutions such as those adopted for converting state data into event sequences. The
material assembled here should undoubtedly help others in preparing data for se-
quence analysis. At least it corresponds to what we would have liked to find when
we started to work with sequence data.

The data organization strongly depends indeed on the nature of the sequence and
it is therefore important to identify the kind of sequence data at hand. We have seen
that an important distinction that should be done is between chronological sequences
and sequences without time content. Behind positions and sequence lengths, the for-
mer hold indeed time information that we should care to preserve when manipulat-
ing and converting sequences. Then, for time stamped sequences, a second impor-
tant distinction is between state and event sequence data. The conversion from one
of these types into the other one may be awkward and the solutions proposed here
constitute perhaps the most original part of the chapter. Now, though the overview
looks complete we can imagine some further developments, for instance regarding
the automatic detection of the data organization or in the designing of additional
solutions for automatizing the conversion between states and events.

Acknowledgement

This work was realized within a research project entitled “Mining event histories:
Towards new insights on personal Swiss life courses”. The authors are grateful to
the Swiss National Foundation for scientific research who supported this project
under grant SNF-100012-113998.

Converting between various sequence representations 21

References

1. Aassve, A., Billari, F., Piccarreta, R. Strings of adulthood: A sequence anal-
ysis of young British women’s work-family trajectories. European Journal of
Population, 23(3):369–388, 2007. doi: 10.1007/s10680-007-9134-6.

2. Blossfeld, H.P., Golsch, K., Rohwer, G. Event History Analysis with Stata.
Lawrence Erlbaum, Mahwah NJ, 2007.

3. Brock, G.N., Shaffer, J.R., Blakesley, R.E., Lotz, M.J., Tseng, G.C. Which
missing value imputation method to use in expression profiles: A comparative
study and two selection schemes. BMC Bioinformatics, 9:12, 2008. doi: 10.
1186/1471-2105-9-12.

4. Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S. Mining sequence data
in R with TraMineR: A user’s guide for version 1.1. Technical report, Depart-
ment of Econometrics and Laboratory of Demography, University of Geneva,
Geneva, 2009. URL http://mephisto.unige.ch/traminer.

5. Gauthier, J.A., Widmer, E.D., Bucher, P., Notredame, C. Multichannel sequence
analysis applied to social science data. Manuscript, University of Lausanne,
2007. (Under review).

6. Hobbs, J.R., Pan, F. An ontology of time for the semantic web. ACM Transac-
tions on Asian Language Information Processing, 3(1):66–85, 2004.

7. Karweit, N., Kertzer, D. Data organization and conceptualization. In Giele,
J.Z., Elder, G.H., editors, Methods of Life Course Research: Qualitative and
Quantitative Approaches, pages 81–97. Sage, 1998.

8. Little, R.J.A. Modeling the drop-out mechanism in repeated-measures stud-
ies. Journal of the American Statistical Association, 90(431):1112–1121, 1995.
URL http://www.jstor.org/stable/2291350.

9. Ritschard, G., Oris, M. Life course data in demography and social sciences:
Statistical and data mining approaches. In Levy, R., Ghisletta, P., Le Goff,
J.M., Spini, D., Widmer, E., editors, Towards an Interdisciplinary Perspective
on the Life Course, Advances in Life Course Research, Vol. 10, pages 289–320.
Elsevier, Amsterdam, 2005.

10. Yamaguchi, K. Event history analysis. ASRM 28. Sage, Newbury Park and
London, 1991.

11. Zaki, M.J. SPADE: An efficient algorithm for mining frequent sequences. Ma-
chine Learning, 42(1/2):31–60, 2001.

