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A robust look at the use of regression diagnostics

GILBERT RITSCHARD & GERARD ANTILLE

Department of Econometrics, University of Geneva, CH-1211 Geneva 4, Switzerland

Abstract. The need to pay special attention to atypical data in regression analysis is generally accepted. First,
because of their excessive influence on the regression results. However, also as emphasized by Gray, the unusual
data often provide useful information. Thus, even if robust regression techniques offer a remedy to the fitting
problem, the need for regression diagnostics remains. Robust techniques lead to powerful remoteness indicators
which, unlike the classical measures based on least squares, are themselves insensitive to atypical data. A re-
examination of the two examples discussed by Gray shows that these robust indicators advantageously
complement the information obtained with classical influence measures.

1 Introduction

In a recent paper, Gray (1989a) provides very interesting hints on the use of regression
diagnostics, which he illustrates on two real data sets. He focuses his discussion on
classical, i.e. least squares based, diagnostics, arguing that they are easily calculable and,
more importantly, available in the major statistical packages. The purpose of this paper is
to complete the discussion by showing how robust outlyingness indicators can provide
further insight on unusual data. The same two real data sets are used as illustrations.

Indeed, robust diagnostics have not yet been implemented in common statistical
packages like sas, spss, etc. Packages exist, however, which offer robust techniques: s-PLUS
(which runs under UNIX) from Statistical Sciences (1988), sc the Statistical Calculator
(UNIX, DOS) from Dusoir (1989), and ROBETH (a set of FORTRAN routines developed at
the Swiss Institute of Technology ETH, see Marazzi, 1985) to mention just a few. Also,
there are of course the two nifty and easy to use PROGRESs (Leroy & Rousseeuw, 1984) and
PROCOVIEV (Rousseeuw & Van Zomeren, 1987) programs which have been used to
compute the numerical results exhibited in this paper.

Robust indicators of outlyingness have been seen to be superior to classical diagnostics
to detect atypical data (see, for instance, Rousseeuw & Leroy, 1987, or Antille & Ritschard,
1990, for an introduction to the topic). This superiority lies especially in their ability to
cope with multiple outliers, contrarily to the classical measures which suffer from the
masking effect in the sense that one atypical point can make all other outliers have small
values of the diagnostic measures. Nevertheless, robust indicators do not measure the
influence of the atypical data on the least squares regression. Hence, robust remoteness
information usefully complements the influence indications obtained from classical
diagnostics, but does not replace them.

Section 2 recalls the goal and definition of the main classical and robust diagnostic
measures. Section 3, then, reconsiders, from a robust viewpoint, the two examples
discussed in Gray (1989a).

2 Atypical data indicators

For our discussion, we partition the atypical data indicators into influence and direct
remoteness measures. Influence diagnostics measure the outlyingness of data indirectly
through their influence on the regression results. Classical diagnostics are mainly of this
type. Robust techniques are more concerned with the direct measure of outlyingness.



42 Gilbert Ritschard & Gérard Antille

In order to introduce some notations, let us consider the regression model
y=Xp+e¢

where y is the n vector of the dependent variable, X the n x p matrix of p independent
variables, B the p vector of coefficients, and & an n vector of independent errors, which we
assume to be symmetrically distributed and independent of the X variables. We denote by
B=(X'X)" X'y the least-squares (LS) estimator of B. The hat matrix H=X(X'X) ™ !X/, from
which we get the LS fitted values § =Hly, is of special interest for diagnostic purposes. Its
diagonal elements are denoted by h;,, We use r to designate the vector of LS residuals
r=y—§ and r,, for the residuals relative to a robust fit. Likewise, s denotes the square
root of the usual error variance estimator s2 = Xr;2/(n — p) and s,,,, designates a robust scale
estimate. Classical diagnostics extensively use LS results obtained with ith case removed.
We designate these results with a subscript i in parentheses. For example, B, §, and s,
denote, respectively, the parameter estimate, the vector of fitted values and the standard
error computed after deletion of the ith case.

2.1 Direct remoteness measures

There are two kinds of atypical data in regression analysis: factor-outliers and fit-outliers.
Factor-outliers (or X-outliers), classically known as high leverage points because of their
effect on the least squares regression, are outlying in the space of the independent
variables, i.e. in the row space of X. Fit-outliers (or y-outliers) are cases which show an
unusual response to the explanatory variables. Both merit special attention. The
distinction is however essential from an interpretation viewpoint. As will be shown in the
examples, the lack of fit of the y-outliers often provides fruitful indications about missing
explanatory factors. Well fitted factor-outlying points, obviously, cannot by used this way.
They may be, however, a good indication of the model’s persistence over a wide range of
explanatory variables values. The two kinds of atypical data also have different statistical
implications. Fit-outliers always deteriorate least squares fittings, while factor-outlying
points, when not also fit-outliers, may over-reduce the standard deviation of the estimates
and, hence, provide the illusion of a good adjustment.

The classical approach to the detection of fit-outliers focuses on standard forms of the
LS residuals. The three main classical indicators are the standardized residual § =r,/s, the
Studentized residual r{=r /s(1 —h;)'/* and the jack-knifed residual r{ =r;/s;(1 —h)'/% The
terminology used here is taken from Rousseeuw & Leroy (1987). There is, however, no
universal agreement about it. For instance, Gray’s (1989a) standardized residual
corresponds to our r', and Belsley et al. (1980) use the term Studentized to describe our
jack-knifed residual. The latter has the advantage to have a known Student distribution
with n—p degrees of freedom when the errors ¢ are normally distributed. In practice,
though the Studentized and jack-knifed residuals score slightly higher than the
standardized r%, a cut-off of 2-5 seems reasonable for all three measures.

The drawback of the LS residuals is that they are themselves influenced by the atypical
data. This makes them especially unreliable in the case of multiple unusual data. This
problem can be avoided by considering the residuals relative to a robust fit. A robust
standardized residual r{, is obtained by standardizing the robust residual r,,, with the
corresponding robust scale estimate s,

s =ri,rob
i,rob Seob
Here again, a cut-off of 2'5 is recommended.
Robust regression estimators which can be used to determine the robust fit
include R-estimators (based on ranks, cf. Hettmansperger, 1984), influence bounded
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M-estimators (see, for instance, ch. 6 in Hampel et al., 1986) and high breakdown point
estimators (Rousseeuw & Leroy, 1987). The third of these which protect against a high
number of unusual data, are the most suitable for diagnostic purposes. Rousseeuw’s (1984)
least median of squared residuals (LMS) estimator is the best known in that family It is,
for instance, available in s-PLUS and in the Statistical Calculator sc. Formally, it is defined
as the solution B, s of the problem

min {med (y,— X8’}
B i

and corresponds to the centre of the smallest band which covers at least 509 of the data.

For factor-outliers, the classical indicators are the diagonal elements h; of the hat
matrix. Each h; is linearly related to the squared Mahalanobis distance MD,? from the
ith case to the mean point of the observed explanatory variables (Rousseeuw & Leroy,
1987, p. 225) such that

1 1
h;= MD;2 4~
n—1 n

Clearly, large h; values, or equivalently large M D, distances, indicate high leverages, i.e.
factor-outlyingness. Usual cut-offs are 2p/n for h, and yZ,_,) ¢.075 for the squared
Mabhalanobis distance.

Robust factor-outlyingness indicators are obtained by using robust distances instead of
the classical Mahalanobis distance. One can, for instance, consider the minimum volume
ellipsoid (MVE) squared distance (Rousseeuw & Leroy, 1987, p. 260, Rousseeuw & Van
Zomeren, 1990):

DMVE,;? =(x; — cyvg) Vuve(Xi — Cuve)

where cyyg is the centre of the MVE which covers 50% of the data and Vg is the
covariance matrix computed on these covered data. Rousseeuw & Leroy suggest a
cut-offequal to x(p 1).0-975 for DMVE2. Let us notice that the DM VE; indicator requires
much computation time. It is, thcreforc only applicable in the case of a rcasonablc number
of variables. For instance, we did not get any results for the four variables example
discussed in Section 3.2 after a full night on a 386 PC. The results were finally computed in
28 min of CPU on a mainframe IBM 3090 machine.

Finally, let us consider global direct remoteness indicators which attempt to detect
atypical data without bothering with the distinction between fit- and factor-outliers. A
classical measure is the Andrews & Pregibon (1978) determinantal R; ratio:

_det(ZyZy)_, re

T det(ZZ) 1 (n—p)s?

where the matrix Z is the X matrix augmented by the vector y and Z, is the Z matrix with
the ith case deleted. Small values of R, identify extreme cases in the case space. Another
classical measure, which obeys the logic of the h; values, is given by the diagonal elements
of the matrix Z(Z'Z)"'Z’ (see, for instance, Cook & Weisberg, 1982). Indeed, the ith
diagonal term is equal to 1 — R;. This last measure has the advantage to have, like other
outlyingness measures, large values associated with atypical data. The inverse 1/R; of R;
would, however, better emphasize the extreme cases.

Likewise, the DMVE, distance computed on the rows of matrix Z provides a robust
global remoteness indicator. Rousseeuw’s resistant diagnostic (cf. Rousseeuw & Leroy,
1987, pp. 238-240) is another robust measure. It is obtained as a byproduct of the LMS
estimates. It presents, therefore, obvious computational advantages. Broadly, the resistant
diagnostic RD; considers, for each case i, its maximal relative residual to an hyperplane.
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The relative residual is rr(B)=|r(p)|/medr{B)l, where r{(B) is the residual to the
hyperplane defined by B. Let u;=max, rr{B) denote its maximum over all hyperplanes.
The resistant diagnostic is then defined as the following normalized u;

u.
RD,=——
" medy;

In practice, the RD; values are computed by considering only the hyperplanes passing
through p of the n data points. These are, indeed, the hyperplanes which are successively
checked to determine the LMS estimate. Rousseeuw & Leroy again suggest a 2-5 cut-off.

2.2 Influence measures

The goal of the influence indicators is not to measure remoteness, but to quantify the
individual statistical effects of the data on the regression results. Incidentally, they also
provide indirect remoteness information. The quantified influence information is
obviously interesting per se. It remains however only valid for a given regression
estimator. Furthermore, it makes sense for least squares techniques which are very
sensitive to atypical data. For robust estimators, the influence information is much less
important since robust estimators limit themselves the influence of atypical data. The
following measures refer, therefore, only to the influence on LS regression results. We
successively consider the influence on the estimate of B, on the fitted values and on the
overall fit. All measures use the same deletion principle: the LS results are compared with
those obtained with case i removed.

The influence of case i on the estimate B of the regression parameters, is measured, for
instance, by the distance between p and ﬂ(,-,. Of course, different metrics can be used. Cook
(1977) proposes the metric X'X/ps?, i.e. a Mahalanobis-like metric based on the classical
estimator of the covariance matrix of B. Cook’s squared distance is thus

CD.2= (30) — ﬂ)’X'X(ﬁ(i) ) — hr?
' ps® ps*(1—h)?

A high value of CD;? indicates a great influence of the ith observation on B. As for the
cut-off, Cook (1977) suggests comparing the CD,? with a central F distribution with p and
n—p degrees of freedom. Cook & Weisberg (1982) simply retained a cut-off of 1:0. We
propose a cut-off equal to 6:25 (=2-52) times the median of the squared Cook’s distances
which, as will be shown in Section 3, proves to be more helpful.

Measures of the influence of case i on the fitted values are given by distances between the
vectors §=XB and §,,=XB,;. The Euclidean distance can be shown to be equal to the
Cook distance CD; between parameter estimates. By standardizing this Euclidean
distance by s(i)\/}T,- we get the DFFITS; measure introduced by Belsley et al. (1980). These
authors, indeed, introduced DFFITS,; as the scaled change in the fit for the deleted case:

| Yi—Yiwy { (n—p—Dhr? }1/2
DFFITS, = -
so/h ((I=R)[s*(n—p)1—h)—r?]

(Note, as compared with the formula in Gray, (1989a, b), the correct place of s2.) Again,
we suggest for DFFITS; a cut-off equal to 2-5 times its median.

Finally, for measuring the influence on the overall fit, one can consider the change or
ratio of overall fit indicators. One usual measure, considered for instance by Gray (1989b),
is the ratio MSRATIO; between the mean square errors s> and s,

s (n—p—1)(1—h)
M RATIO = = =P =)=l
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In the above formulae, the classical indicators have been expressed in terms of the LS
residual r; and the classical leverage indicator h, We can thus notice that influence
indicators like the squared distance CD;? of Cook or the DFFITS,, by depending upon the
product h;r;2, take large values only for cases with both important leverage effect and
residual. This makes such measures unsuitable to detect very well fitted X-outliers with
very low leverage. Generalizations of influence measures to multiple-case diagnostics have
also been considered. See for instance Cook & Weisberg (1982) for an extension of Cook’s
distance and Belsley et al. (1980) for a generalized DFFITS,. These generalizations have,
however, little practical scope because they require consideration of an intractable
number of subsets of data.

As explained before, influence measures do not make much sense for robust estimators.
Nevertheless, such estimators can provide alternative influence information. Typically,
the inverse of the automatic weights affected to the data by robust M-estimators have such
a flavour of influence measure. It has been shown (Antille & Ritschard, 1990), however,
that these weights exhibit, except perhaps for the residual effect, results very similar to
those of the classical measures.

2.3 Graphical summaries

A diagnostic analysis requires dealing with a very large volume of information: each
diagnostic provides one value for each case. Graphical summaries should obviously help
to capture the essential of this information. Several plots have been introduced in the
literature. Indicators can simply be plotted versus the case number. Recently, Doreian &
Hummon (1990) introduced a plot of single parameter change with error bars versus case
number. Among more sophisticated plots, we can mention Atkinson’s (1981, 1985) half-
normal plots of the jack-knifed residual and of a transformed Cook’s distance. Also, of
course, there is Gray’s (1989b) four-measure influence plot which has the advantage of
visualizing at once the CD;%, DFFITS;, MSRATIO; and 1 — R;. To detect remoteness, the
most useful seems to be leverage-residual (L-R) plots (the terminology was introduced by
Gray, 1986) which usually display the squared or absolute value of a standardized residual
against a factor-outlyingness (leverage) measure. These plots exist in different variants,
depending on the kind of standardized residual and the factor-outlyingness indicator
considered. Hoaglin & Kempthorne (1986) also added contours of a cut-off for DFFITS;
on L-R plots. The main interest of L-R plots lies in their ability to pinpoint
simultaneously fit-outliers and factor-outlying points. Fit-outliers lie in the upper left-
hand corner, well fitted factor-outlying points in the lower right one, and y-outliers with
high leverage effect in the upper right-hand part of the plot. Superimposing the partition
defined by the cut-off values on the plot clearly points out the atypical data and their
nature.

Since robust indicators are mainly robust residuals and robust leverage measures, the
L-R plot is obviously the most appropriate to represent robust diagnostic information.
Unlike least-squares residuals, robust residuals, like LMS residuals for instance, are not
constrained to sum to zero. In order to exhibit the possible asymmetry, we suggest, then,
plotting the residual and not its square or absolute value.

3 A robust look at Gray’s examples

We illustrate, here, with two examples how robust remoteness indicators can complement
classical diagnostics. The examples are those discussed in Gray (1989a). The first concerns
a simple regression and the second a multiple regression.
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3.1 The homes prices example

In his first example, Gray conducts a single regression analysis on data taken from
Mendenhall et al. (1986, pp. 544-545). These data concern the sales of 50 single-family
residential homes in Eugene, Oregon in 1980. The dependent variable is the sales price
(Price) and, among seven explanatory variables, Gray retained only the most significant,
i.e. the square footage (Sq ft).

A scatter plot of the data is given in Fig. 1, together with the LS and LMS regression
lines. The data can be found in either Mendenhall et al. (1986) or Gray (1986a), and are not
reproduced here. Table 1, recalls the value of some classical indicators. In addition, it gives
the standardized LMS rtesiduals (fit-outlyingness indicators), the MVE distances (factor-
outlyingness indicators) and the resistant diagnostics RD; (global remoteness indicators).

In order to facilitate the comparison between the global diagnostics, the Cook CD,?, the
DFFITS,; and the Andrews & Pregibon 1 — R; have been standardized with respect to their
median. Unusual values are marked with asterisks. The cut-offs retained are 6:25 for the
standardized CD,2, 25 for the resistant diagnostic RD,, as well as for the standardized
DFFITS,; and 1— R,. For the factor-outlyingness measures MD,> and DMVE_?, the cut-
off is x3 o.975=503. For the standardized residuals we also retained a cut-off of 2-5.

As shown by Gray, the classical diagnostics designate points 49 and 50 as unusual data.
The distance MD_2, a linear transformation of h;, indicates high leverage for observation
50 and low leverage for 49. From the LS residuals, 49 is a strong fit-outlier, while 50 seems
to behave like the bulk of the data.

From the robust indicators we get a slightly different view. The robust L-R plot given in
Fig. 2, confirms that 50 is outlying in the factor space, but indicates that it is also a fit-
outlier. Furthermore, while confirming that 49 is a strong fit-outlier, it pinpoints six
additional y-outliers: 8, 25, 44, 45, 46 and 47.

The signs of the LMS residuals provide here interesting information. Indeed, all eight
are positive. Thus, all fit-outliers lie on the same side of the LMS line as can be shown in
Fig. 1. This suggests that the LMS line determines some starting sales price for a given
square footage. The difference between the basic and actual prices can here be explained in
terms of some hidden variables giving added value such as neighbourhood, location or
high quality. The fact that there are more fit-outliers among the homes with large square
footage may, for instance, simply reflect the higher proportion of luxurious or pleasantly

200000

50

T

160000

120000

80000

40000

0 i L ) n
0 1000 2000 3000 4000
Sq ft

Fig. 1. LS (---) and LMS (—) on the residential homes data.
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Table 1. Classical and robust diagnostics for the homes prices example
Median standardized Factor-outlyingness Standardized
global diagnostics indicators residuals
i CD;> DFFITS; (1-R) RD, DM;? DMVE;? LS LMS
1 0-20 0-40 2:08 1-67 308 345 —-013  —033
2 2:40 1-60 1-85 1-68 2:30 271 —-056 —110
3 0-60 0-70 1-80 1-52 2:50 290 -026 —051
4 420 2:00 195 215 2:30 271 073 1-65
5 0-00 0-00 1-13 125 1:25 1-69 0-00 0-36
6 4-80 220 1-90 220 2:06 249 0-83 191
7 1-00 1-00 128 1-68 1:32 176 0-45 129
8 10-40* 3-20* 233 271* 2:06 2:49 121 271*
9 0-00 0-10 0-85 1-09 0-69 1-10 —-003 048
10 1-00 1-00 1-15 1-63 1-08 1-51 045 1-36
11 0-40 0-60 0-78 0-84 041 077 —-033 -004
12 240 1-60 1-40 195 125 1-69 071 1-85
13 0-80 090 0-78 0-69 023 0-55 —-055 —-039
14 1-00 0-90 0-78 0-64 0-16 045 —-061 —047
15 0-40 0-60 070 072 023 055 —-038 —004
16 0-80 0-80 073 0-60 012 0-39 —-055 —032
17 0-00 030 0-73 1-19 0-41 077 0-18 1-05
18 1-40 120 0-85 070 0-04 024 -079 —-072
19 1-00 1-00 0-78 063 0-03 023 —-069 —050
20 220 1-50 1-05 0-86 0-00 010 —102 —-107
21 0-40 0-60 0-60 0-54 005 027 —040 0-09
22 0-60 0-80 0-68 0-56 001 015 -057 -019
23 0-20 0-50 0-58 0-50 0-03 021 -037 0-19
24 0-00 0-10 0-55 1-00 010 0-36 0-08 1-05
25 6-40* 2-50* 175 2-87* 072 1-13 1-31 3-30*
26 1-60 1-30 093 077 0-03 003 —088  —067
27 1-60 120 090 074 003 0-03 —0-85 —0-62
28 2-80 1-70 120 0-97 010 0-00 —-112 -107
29 1-60 1-30 093 0-76 0-06 001 —-08  —059
30 0-20 0-40 055 062 0-02 0-04 -027 0-59
31 1-60 1-20 0-93 073 016 0-00 —080 —036
32 0-40 0-60 0-63 0-63 0-06 0-01 —043 033
33 0-80 0-90 0-78 077 023 001 —0-54 0-24
34 0-60 0-70 073 0-80 023 0-01 —046 042
35 0-40 0-60 0-68 0-82 0-20 0-01 —0-39 0-54
36 0-40 0-60 075 093 0-31 003 —0-39 0-62
37 2:60 1-60 120 091 0-64 0-14 —-086 —021
38 0-80 090 0-90 1-00 052 0-09 —0-49 0-50
39 360 190 1-43 1-00 092 027 —-093  —027
40 340 1-80 1-43 1-10 111 0-36 —084 —002
41 000 0-20 0-98 1-61 092 027 —012 1-45
42 0-60 0-70 1-03 2:10 092 027 0-36 248
43 0-20 0-30 1-30 218 155 0-59 015 220
44 13-40* 3-80* 3:30* 4-53*% 024 0-01 226 6-20*
45 1-60 1-30 1-58 2:68* 1-84 075 0-50 3-02*
46 9-40* 3-10* 215 3-58* 092 027 1-50 4-89*
47 13-40* 3-80* 2:83* 4-20* 0-64 0-14 1-96 575*
48 1-20 1-00 243 243 3-66 1-83 —-031 1-68
49 41-40* 8:10* 9-93* 7-49* 010 0-00 424  10:28*
50 35-80* 6:00* 6-65* 5:30* 11-22* 681* 0-90 517*
Cut-off 625 2:50 2:50 2:50 503 503 2:50 2:50
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Fig. 2. Robust L-R plot for the residential homes data.

located houses among large homes. The price difference may also suggest an information
asymmetry between the buyer and the seller, i.e. a buyer’s lack of knowledge may have led
to over-payment for a house.

To summarize, the use of robust fit-outlyingness indicators leads, in this example, to a
more refined interpretation of the underlying structure of the data set. This interpretation
comes up from the unbalanced (i.e. all high residuals of the same sign) configuration of the
robust residuals. Indeed, such a configuration is possible only because the LMS residuals
are not, contrarily to the LS residuals, constrained to add up to zero.

Finally, let us notice that the classical Mahalanobis distance MD; and the robust
distance DM VE; provide quite similar indications about factor-outlyingness. Since there
is only one independent variable, the two indicators differ only in their choice of centre.
MD, measures the distance to the mean square footage (1900-4), and DMVE, to the centre
(2130) of the smallest interval which covers 50%; of the data. Because of the global leverage
of the small homes, point 50 is somewhat paradoxically, less distant from the robust
centre than from the mean. The next multiple regression example exhibits more significant
differences between the two measures.

3.2 The fuel consumption example

The second example in Gray (1989a) is a multiple regression from Weisberg (1980) on data
collected from the 48 contiguous United States. Per capita fuel consumption (FUEL) is
regressed on the state gasoline tax (TAX), the percentage of licensed drivers in the state
(LICENSE), the state average personal income (INCOME), and the total length of
Federal-aid primary highways in the state (ROAD). The LS parameters with their
standard errors between brackets are given in Table 2. The table also shows the LMS
estimates and reweighted LS (RWLS) estimates obtained by giving zero weight to the
LMS outliers. The data themselves can be found in either Weisberg (1980) or Gray (1989a).

Table 3 gives the values of classical and robust diagnostics. It includes factor-
outlyingness indicators (MD;? and DMVE;?), LS and LMS standardized residuals, the
resistant diagnostic RD,, and the four classical indicators displayed in Gray’s (1989a) four-
measure plot. For purposes of comparison, the values of the these last four measures, i.e.
the squared Cook distance CD;?, the DFFITS,, the MSRATIO; and the Andrews &
Pregibon 1—R;, have been standardized with respect to their median. Stars designate



Regression diagnostics 49

unusual values. The cut-offs retained are similar to those used in example 1, except for the
leverage indicators. This cut-off is here 3 4.075 = 11-14 since there are four explanatory
variables. Note that our cut-off values for the classical diagnostics clearly detect the six
influencing cases identified by Gray, i.e. Rhode Island (RI), North Dakota (ND), South
Dakota (SD), Texas (TX), Wyoming (WY) and Nevada (NV). They indicate, indeed, that
two more cases merit special attention: New York (NY) and Idaho (ID). The resistant
diagnostic RD;, which behaves quite similarly to the Andrews & Pregibon 1—R;
remoteness indicator, seems less efficient. It pinpoints only Wyoming (WY) and Nevada
(NV).

In order to understand better the role of the influencing cases, let us consider the
residuals and factor-outlyingness measures. The classical L-R plot (Fig. 3) indicates that
Wyoming (WY)is a fit-outlier, and that Texas (TX), New York (NY) and Nevada (NV) are
high leverage points, i.e. factor-outliers. The robust L-R plot (Fig. 4) exhibits broadly, but
more clearly, the same results. An important difference, however, concerns the role of
Nevada (NV) which appears to be more a fit-outlier than a factor-outlier. This, together
with the identification of North Dakota (ND) and South Dakota (SD) as obvious fit-
outliers, reinforces Gray’s interpretation. Indeed, Gray argues that the bad LS fit results
from a missing home isolation factor. This argument gains evidence here with four fit-
outliers corresponding to states with high degree of isolation. Note that it is not correct to
use Texas (TX), which is relatively well adjusted by the LS and LMS regressions, to argue
in favor of this isolation factor. Texas’ large influence results only from its high leverage
effect and does not reflect a departure from the model. Rhode Island (RI), on the other
hand, which was discarded by Gray, provides some further arguments. Its LMS residual is

Table 2. LS, LMS and reweighted LS estimates

Constant Tax License Income Road R?
LS 3773 —348 13364 —0-067 —00024 068
(185-5) (12-9) (192-3) (0-017) (0-0034)
LMS 3194 —69 1025-4 —0-069 —0-0005 0-80
RWLS 4532 —157 951-4 —-0-077 00020 074
(128-2) 9-2) (1417) (0-012) (0-0024)
4
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2 o SD :
o ° ° i NV
) ° ° e
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Fig. 3. Classical L-R plot for the fuel consumption data.
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Fig. 4. Robust L-R plot for the fuel consumption data.

very near the 2-5 cut-off and is of the opposite sign of the four other high residuals. This is
exactly what we would expect from a state with low degree of isolation.

Differences between robust and classical factor-outlyingness indicators are less
spectacular. However, the DMVE,;? complements the information provided by the
classical Mahalanobis distance. It indicates, for instance, that, despite their lower
individual classical leverages, South Dakota (SD), Nebraska (NE) and Idaho (ID) are
more outlying than Nevada (NV) in the factor space. This should warn us about some
masked global leverage effect of these three states.

4 Conclusions

Atypical data in regression analysis obviously merit special attention. They are sources of
fitting problems which can be solved through robust regression. However, as claimed by
Gray (1989a), they also often provide useful unexpected information about the process
under study. Many remoteness and influence indicators are now available to detect these
unusual data. Classical diagnostics are mainly concerned with measuring the individual
influence of the data on the LS results. On the other hand, robust techniques do not
measure influence, but provide powerful direct remoteness indicators. Because of their
insensitivity to masking effects, robust indicators usefully complement the classical
influence measures. They excel, for instance, at distinguishing fit-outliers from factor-
outlying points which is essential from the interpretation viewpoint.

Classical diagnostics, which are simply LS byproducts, have been incorporated into the
major statistical packages. Robust indicators are somewhat more complicated to
compute. They are, nevertheless, available in some more specialized packages such as s-
PLUS, ROBETH and the Statistical Calculator sc. The LMS estimates and residuals require
more computation time than LS results. We get, however the results within a few seconds
on a PC for our multiple regression example. The DM VE,; is much more time consuming:
28 min of CPU was necessary on an IBM 3090 for our second example. This obviously
limits its practical scope.
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