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Abstract

Individual longitudinal or sequence data are common to many fields. For instance, they are essential
for understanding and predicting the evolution of a patient’s disease after it has been diagnosed
(survival analysis), the behavior of a visitor of a web site (web log mining), but also for categorizing
or clustering signal sequences in domains such as telecommunication. This paper focuses on the
analysis of individual longitudinal data within social sciences, especially in population science
where we are interested in describing and understanding life courses. A life event can be seen as
the change of state of some discrete variable, e.g. the marital status, the number of children, the
job, the place of residence. Such life history data are collected in mainly two ways: As a collection
of time stamped events or as state sequences. The former is used for instance by survival analysis
that focuses on a given type of event and is concerned with its hazard rate or equivalently the
duration until it happens. Sequence analysis on the other hand is concerned with the sequencing
of the events and is best suited for characterizing whole life trajectories. We consider using data-
mining-based approaches borrowed from other fields for analysing life courses with both a survival
and a sequence perspective. We put stress on the social scientist’s expectations and address some
of the statistical challenges they raise.

1 Introduction

An individual life course paradigm emerged during the 80’s from disciplines such as sociology and
population studies. It states that analysing the time evolution of aggregated quantities such as
the average age of women who married each year, the ratio of the number of new births on the
number of women in age of procreating, or the proportion of unemployment is not sufficient and
that we have to look at individual trajectories for understanding the social forces behind the way
people organize their personal life courses. Much effort has been put for collecting individual lon-
gitudinal data. Many countries conduct today large panel surveys which permit to follow sampled
individuals during a great number of years. Retrospective biographical surveys such as the Family
and Fertility Survey (FFS) have also been conducted. The statistical match between censuses,
population registers and possibly other administrative data sources permits also to create very
rich databases of individual longitudinal data. All these data collection efforts would, nevertheless,
be worthless without suitable tools for discovering interesting knowledge from life course data.

Personal life courses are defined by a succession of events regarding living arrangement, familial
life, education, professional career, health, etc. Methods for analysing them are of mainly two sorts:
1) Methods that focus on a specific event — leaving home, marriage, childbirth, first job — and
examine how the hazard of experiencing it evolves with time and may be affected by other factors.
We shall call them the survival methods. They include the well known Kaplan-Meier survival
curves and Cox proportional hazard model. 2) Methods for sequence analysis that are primarily
concerned by the order in which events occur and the transition mechanism between successive
states. These include for instance discrete Markov models and optimal-matching-based clustering.
The aim of the paper is to make an overview of these methods with a special emphasize on non
parametric heuristic data-mining-based approaches.
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Our presentation will be organized as follows. We start in Section 2 by shortly discussing
alternative representations of life course data. In Section 3 we propose a typology of methods for
life course data distinguishing between survival and sequence methods, but also between descriptive
and causal approaches, between parametric and non parametric models. In Section 4 we present
survival trees in some details while Section 5 is devoted to the mining of typical sequential patterns
and rules connecting episodes. Finally, we make some concluding remarks in Section 6.

2 Time to Event and State Sequence Views

There are different ways of organizing event histories data and each method may require a specific
organization. A life event can be seen as the change of state of some discrete variable such as the
marital status, the number of children, the job or the place of residence. Such life history data are
collected in mainly two ways: as a collection of time stamped events (Table 1) or as state sequences
(Table 2). In the former case, each individual is described by the realization of each event of interest
(e.g. being married, birth of a child, end of job, moving) mentioned together with the time at which
it occurred. In the second case, the life history of each individual is represented by the sequence
of states of the variables of interest, each state being given in regard of the corresponding period.
Panel data are special cases of state sequences where the states are observed at periodic time.

TABLE 1. Time stamped event view, record for person id1

ending secondary school in 1970 first job in 1971 marriage in 1973

TABLE 2. State sequence view, person id1

year 1969 1970 1971 1972 1973
civil status single single single single married
education level primary secondary secondary secondary secondary
job no no first first first

It is always possible to transform time stamped data into state sequences and reciprocally. It is
sometimes also useful to put the data into spell view with a new line each time a change occurs in
the state of any variable or in person-period form with one line for each period where the person
is under observation. The latter form is almost the transpose of the state sequence view. The only
difference is that periods where a person is not under observation give rise to missing values in
the state sequence view, while the concerned lines would simply be dropped in the person-period
presentation.

3 Methods for Life Events Analysis

The aim of this section is to shortly survey the main methods available for dealing with individual
life course data. We first recall classical statistical methods and then present promising data-
mining-based approaches. In each case we distinguish between methods intended for time stamped
data and those that deal with sequences.

3.1 Statistical and data analysis methods

Methods most often used by social scientists are concerned with the duration between two specific
events, birth and leaving home, first union and first child, for example. They assume data in time
stamped form and try to answer questions about the distribution of the “survival” probabilities,
i.e. the probabilities of not experiencing the second event before a duration t. We can distinguish
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descriptive methods that just attempt to describe the survival function, and causal or explanatory
methods used to investigate the factors that may influence the survival curves.

As for state or event sequence data, Abbott (1990, p. 377) distinguishes three kinds of questions.
1) Are there typical sequence patterns, for instance does the first job typically follow the end
of education and precede leaving home, and if yes what are their frequencies? 2) Given a set
of sequence patterns, why are they the way they are? Which independent variables determine
which pattern is observed? Does the socioprofessional status, for example, influence the familial
life course (time of marriage, number and timing of children)? 3) What are the effects of given
sequence patterns on some variables of interest? For example, does the specific pattern of the
successive educational, professional and familial events influence the chances to be in good health
at retirement time? The first kind of questions has a descriptive concern, while the other two are
issues of causality.

The previous discussion suggests the typology shown in Table 3. This table summarizes the
main methods that are used in the literature for analysing life events data. The survival analysis
methods used with time stamped events are shared with biomedicine and industrial quality control
where the concern is just the death of a patient or of a device, hence the term “survival”. These
“survival” methods are perhaps the most widely used for event history analysis. They are well
explained in several excellent textbooks, for instance in Yamaguchi (1991), and Blossfeld and
Rohwer (2002) with a social science perspective, and in Hosmer and Lemeshow (1999) from a
biomedical point of view. The main feature of these methods is the handling of censored data, i.e.
cases that run out of observation while at risk of experiencing the studied event. Hazard regression
models, with discrete or continuous time, especially the semiparametric Cox (1972) model, are well
suited for analysing the causes of events. Their success is largely attributable to their availability
in standard statistical packages and to the ease of interpretation of the regression like coefficients
they produce. Advanced issues regarding these models include the simultaneous analysis of several
events (Lillard, 1993; Hougaard, 2000) and the handling of variables shared by members of a same
group, i.e. multilevel analysis (Courgeau and Baccäıni, 1998; Barber et al., 2000; Therneau and
Grambsch, 2000; Ritschard and Oris, 2005).

Methods for sequence analysis, though best suited for analysing trajectories in a holistic per-
spective (Billari, 2005), are less popular. This is certainly due to the lack of friendly software for
dealing with sequence data. A first simple approach consists just in counting the occurrences of
predefined subsequences. This leads indeed to consider the predefined subsequences of interest as
categorical variables, which may then be analysed with tools for such variables, log-linear models
(Hogan, 1978) or classification trees (Billari et al., 2006) for instance.

Clustering based on the edit distance (Levenshtein, 1966; Needleman and Wunsch, 1970; Sankoff
and Kruskal, 1983) between each pair of sequences has been popularized in social sciences by
Abbott (see Abbott and Tsay, 2000) under the name of optimal matching and was for example
exploited by Malo and Munoz (2003), Levy et al. (2006), Joye and Bergman (2004) and Lesnard
(2006). See Abbott and Tsay (2000) for a survey of earlier social science works carried out in
this field and the accompanying discussion for criticisms. The method is mainly descriptive. It
consists in making a typology of the population by grouping together individuals with similar

TABLE 3. A typology of methods for life course data

nature of data
questions time stamped event state/event sequences

descriptive - Survival curves: - Optimal matching clustering
Parametric (Weibull, Gompertz) - Frequencies of typical patterns
and non parametric (Kaplan-Meier, - Discovering typical episodes
Nelson-Aalen) estimators.

causality - Hazard regression models - Markov models, Mobility trees
- Survival trees - Association rules between

episodes
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life course patterns. The life course associated to each class of the typology is then analysed
by looking at how the probabilities to be in the different possible states change over the age
scale. This produces nicely interpretable aggregated results. Such representations are judiciously
complemented with Index plots (Brzinsky-Fay et al., 2006) depicting the variability of individual
trajectories inside each cluster. Optimal matching clustering can be realized for instance with
free softwares such as TDA (Rohwer and Pötter, 2002) and SALTT (Notredame et al., 2006), or
with the SQ package (Brzinsky-Fay et al., 2006) for Stata. Recent developments regarding optimal
matching include training procedures for learning ‘optimal’ state substitution costs (Gauthier
et al., 2007a) and multichannel approaches (Gauthier et al., 2007b). Similar techniques based on
non-aligning similarity measures have also been recently considered for instance by Elzinga (2003).

Another useful method for sequence data is discrete Markov modeling that focuses on the
state transition probabilities between two successive time points. They are often used for mobility
analyses. Advances in this area include the modeling of high order process (Raftery and Tavaré,
1994; Berchtold and Raftery, 2002), Hidden Markov Models, HMM, (Rabiner, 1989) and their
generalization as Double Chain Markov Models, DCMM, (Paliwal, 1993; Berchtold, 2002), and
Markov Models with covariates (Berchtold and Berchtold, 2004, p. 50). Despite these advances,
the estimation of Markov models lacks often reliability and the results provided remain hard to
interpret when we departure from very simple specifications.

3.2 Data-mining-based approaches

Data mining is mainly concerned with the characterization of interesting patterns, either per se
(unsupervised learning) or for a classification or prediction purpose (supervised learning). Unlike
the statistical modeling approach, it makes no assumptions about an underlying process generating
the data and proceeds mainly heuristically.

Data-mining-based approaches were recently considered for analysing individual life courses
from a socio-demographic point of view. Blockeel et al. (2001) showed how mining frequent itemsets
may be used to detect temporal changes in event sequences frequency from the Austrian Family
and Fertility Survey (FFS) data. In Billari et al. (2006), three of the same authors also experienced
an induction tree approach for exploring differences in Austrian and Italian life event sequences.
We initiated ourselves (Ritschard and Oris, 2005) social mobility analysis with induction trees.

A lot of works has also been done within the field of biomedicine. Of special interest for
discriminating life courses are survival trees (Segal, 1988; Leblanc and Crowley, 1992, 1993; Ahn
and Loh, 1994; Ciampi et al., 1995; Huang et al., 1998; Su and Tsai, 2005). Their principle is
based on that of classification and regression trees (Kass, 1980; Breiman et al., 1984; Quinlan,
1993) that are especially good at discovering interactions effects of explanatory variables. They
recursively seek the best way to partition the population according to values of the predictors so
as to get survival probability curves or hazard functions that differ as much as possible from one
group to the other. De Rose and Pallara (1997) have demonstrated the usefulness of this approach
for socio-demographical analyses.

From this short survey, we may distinguish mainly three data mining techniques that seem
promising for discovering interesting knowledge from life event data. We have reported them in
italic in Table 3. 1) Within the spirit of “survival” methods, survival trees should complement
regression like models by helping at discovering interaction effects between covariates. They will
clearly exhibit differential effects such as, for example, the consequence of having a first child on
the activity rate that differs between women and men, but may also vary with cultural origin and
other factors. 2) Methods for seeking typical subsequences are by their very nature well suited for
the analysis of sequence data. Their outcome, i.e. typical subsequences, may then be used either
as response or predictive variables for causal analysis. 3) The mining of interesting association
rules between frequent subsequences is clearly of interest in the causal perspective. It will lead
to statement such as, for example, having experienced the subsequence first job, first union, first
child, is most likely to be followed by a sequence marriage, second child.
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4 Survival Trees

We briefly explain hereafter the main splitting criteria used for survival trees. Note that since such
trees are intended for dealing with censored data, the usual minimal node size constraints may be
completed with additional constraints on the minimal number of events that should occur in each
node.

4.1 Splitting criteria

As for classical classification trees, there are two main groups of splitting criteria: Those that
attempt to maximize the group difference in the spirit of CHAID (Kass, 1980) and other earlier
tree growing methods, and those that maximize group homogeneity such as CART (Breiman et al.,
1984) or C4.5 (Quinlan, 1993) for instance.

Between group survival curve divergence.

A first idea considered for instance by Segal (1988) is to split each node so as to obtain Kaplan-
Meier (KM) estimates of the survival curve that differ as much as possible between the two resulting
nodes. The divergence between KM curves is measured with a chi-square statistic of the general
Tarone-Ware family

TW =
∑

i

wi

(
di1 − E(Di)

)
(
w2

i var(Di)
)1/2

, (1)

where di1 is number of events (death) observed in the first group (node) at each time ti where
at least one event occurs, Di the random number of events that would occur in the first group
according to the distribution in the node we want to split, and wi weight parameters. Special cases
are the Log-rank statistic (using wi = 1), Gehan’s statistic (wi = ni) and the one (wi =

√
ni)

advocated by Tarone and Ware (1977), ni standing for the number of cases at risk at time ti.
A more elaborated approach based on the same maximal separation principle can be found in
Leblanc and Crowley (1993).

Group homogeneity: Maximal likelihood relative risk.

Leblanc and Crowley (1992) proposed to estimate for each node the maximal likelihood hazard
proportionality factor (relative risk) and to select the split that maximizes the gain in likelihood,
or equivalently the reduction in deviance. The approach supposes that the hazard λh(t) in each
node h is proportional to a reference hazard (the overall hazard for the root node): λh(t) = θhλ0(t).
Estimation of the θh parameters are based on a full likelihood that can be derived assuming a
known cumulative hazard function Λ0(t). Practically, since the cumulative hazard is not known,
the authors rely on an iterative estimation process in which θ̂h and Λ̂0(t) are estimated in turn.
Notice that maximizing the reduction in deviance amounts to maximize group homogeneity. Hence
this approach is more in line with classical tree growing algorithms such as CART or C4.5, which
attempt to maximize some measure of node purity. It is available, for instance, in the rpart package
(Therneau and Atkinson, 1997) for S-plus and R.

A related approach is that of Ciampi et al. (1995) who attempt to maximize Cox’s partial
likelihood of semi-parametric proportional hazard models. Their method is an instantiation of a
general regression tree method (Ciampi, 1991) based on likelihood maximization. The method
parallels CART but considers a pruning criterion in terms of loss of information — deterioration
of deviance — with respect to a first large grown tree. A similar principle is adopted by Leblanc
and Crowley (1992).

Martingale-based residuals.

Ahn and Loh (1994) consider an approach based on the martingale residuals of a Cox model.
Plotting at each node these residuals against each covariate, they select as splitting variable the
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Population 
n = 3619, e = 622 
S < 90% at 11 
S at 30 = 0.77 
TW χ2(1) = 54.81, p<0.0001

<=1940 
n = 841, e = 123 
S < 90% at 21 
S at 30 = 0.86 
TW χ2(1) = 22.48, p<0.0001 

> 1940 
n =2778, e = 499 
S <90% at 9 
S at 30 =  0.73 
TW χ2(1) = 37.44, p<0.0001 

<=1940 & French L. 
n = 174, e = 44 
S < 90% at 11 
S at 30 = 0.74 

<=1940 & Non French L. 
n = 667, e = 79 
S < 90% at 26 
S at 30 = 0.89 
TW χ2(1) = 8.08, p<0.0001 

> 1940 & No Child 
n = 603, e = 138 
S < 90% at 5 
S at 30 = 0.64 
TW χ2(1) = 4.45, p=0.0349 

> 1940 & Child 
n = 2175, e = 361 
S < 90% at 11 
S at 30 = 0.75 
TW χ2(1) = 9.77, p=0.0018 

> 1940 & Child 
& German or Italian L.

n = 1444, e = 217 
S < 90% at 13 
S at 30 = 0.77 

> 1940 & Child 
& French or unknown L.

n =731, e = 144 
S < 90% at 8 
S at 30 = 0.70 

<=1940 & Non French L. 
& University

n = 51, e = 12 
S < 90% at 10 
S at 30 = 0.76 

<=1940 & Non French L. 
& Not University

n = 667, e = 79 
S < 90% at 29 
S at 30 = 0.895 

> 1940 & No Child  
& University 

n = 86, e = 23 
S < 90% at 3 
S at 30 = 0.59 

> 1940 & No Child  
& Not University 

n = 517, e = 138 
S < 90% at 6 
S at 30 = 0.65 

FIGURE 1. Survival tree for marriage duration until Divorce/Separation (Tarone-Ware criterion)

one for which the residuals look the less random. For measuring randomness, residuals are split
into those above their median values and the other ones. The randomness measure is then just
the p-value of the Levene test for the difference in variances between the two groups. The method
can be seen as a special case of a more general method implemented in GUIDE Loh (2007). The
method uses a deviance-based goodness-of-fit to determine whether the selected split is worth
enough to continue growing the tree.

4.2 Illustration

Figure 1 shows a survival tree grown for the risk of divorce or more specifically for the duration
of the marriage until divorce. Data come from the retrospective biographical survey carried out
by the Swiss Household Panel (SHP) in 2002. The criterion used consisted in maximizing the
differences between Kaplan-Meier survival curves using the significance of the Tarone-Ware Test.
A 5% significance limit was used as stopping rule. Explanatory factors considered include among
others birth cohort, education level, whether ego had a child or not, language of the questionnaire
and religious practice, the latter two being cultural indicators. In the nodes of the trees, we have
indicated the number n of concerned cases, the number e of events (divorces), the 90% percentile
of the survival probability S, and the survival probability at 30. The Kaplan-Meier survival curves
corresponding to the 7 leaves (terminal nodes) of the tree are depicted in Figure 2.

It results clearly from this tree that the risk of divorce increases dramatically between those
who are born before 1940 and younger generations, the 90% percentile falling from 21 to 9. We
notice also that if for the older generation there was a significant distinction between the French
speaking population and the rest of the Swiss population — divorce being more common in the
French speaking region,— this distinction is for the younger generations limited to those who had
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Cohort >  1940 & Child & French or Unknown Speaking

FIGURE 2. Survival tree, the 7 resulting KM survival curves

a child. Non French speaking people born before 1940 with education below university level are
the less exposed to divorce. On the other side, those born after 1940 without child but with high
education level are the most exposed.

Growing the tree with Leblanc and Crowley (1992)’s approach, we obtain a somewhat simpler
tree corresponding to the first two levels of the tree obtained with the Tarone-Ware criterion.
From the (not shown) relative risks provided by the method we learn, for instance, that the risk
of divorcing for non French speaking people born before 1940 is only about 48% of the risk for the
whole population, while it is almost 1.9 greater for younger generations with no child.

4.3 Issues with survival trees

The methods just described were developed in the field of biostatistics. They are, however, also of
interest for social sciences as shown by our illustration. When applying them in sociology, socio-
demographic history or population studies we have to take account of specificities of data we may
encounter in these domains. We see two major issues.

First, predictors are most often time varying. Education level or income, for instance, changes
with the age of each considered individual. Likewise, for the divorce example, the first child birth
may well happen the same year as the marriage for some individuals and only after some years of
marriage for other ones. We should then explicitly consider the history of the values taken by such
predictor when growing the tree. This is a difficult issue because of the difficulty in formulating
interpretable splits preserving simultaneously ordering with respect to both the time and the
predictor itself. Segal (1992) discusses a few possibilities, concluding, however, than none is really
satisfactory. Huang et al. (1998) propose a piecewise constant approach that may be suitable for
discrete time varying predictor that change values at only a limited number of time points. There
is obviously room for development on this aspect.

A second important issue is related to the multilevel organization of the data. In social science,
though it is true in other domains too, data may often be grouped into small units whose members
share common characteristics. For example, in the data collected by the Swiss Household Panel, we



8 Mining event histories: A social scientist view

have small groups of individuals belonging to a same household. The variability among individuals
comprises thus a part shared by members of a same unit. Ignoring it may lead to strongly biased
results. Figure 3 taken from Ritschard and Oris (2005) illustrates for instance what happens
in the case of a simple regression. Data are supposed representing the number of children by
woman in regard to the education level, and the women are supposed coming from three different
villages. Ignoring the village shared effect, regression provides a slightly positive line, indicating
a positive relationship: the higher education, the higher the number of children. If we allow for a
shared random discrepancy between villages, we would fit the piecewise lines with negative slopes
indicating that the number of children decreases with education. Thus, ignoring the discrepancy
among villages we fit indeed the village effect rather than individual effects.

y = 3.2 + 0.2 x 

y = 6.2 - 0.8 x 

y = 15.6 - 0.8 x 

y = 12.5 - 0.8 x 

0
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1 3 5 7 9 11 13 15

Education

C
hi

ld
re

n

FIGURE 3. Multi-level: A simple linear regression example with 3 clusters

It is clear that similar fallacious effects will happen with tree partitioning methods and it is a
real challenge to find a way to incorporate such multilevel effects in tree growing procedures.

Survival trees and more generally survival analysis is very useful when we are interested in
one specific event such as the divorce in the illustration shown. It is of poor help, however, if the
concern is to gain insights on the individual life course described by the whole collection of events
that characterize it. Methods that deal with such whole sequences without privileging one given
event are better suited for this unitary, holistic, perspective on life courses (Billari, 2005). This
leads us to the second broad class of methods: The mining of typical sequences.

5 Mining Typical Sequences and Sequential Relationships

It is worth distinguishing here between state sequences and event sequences. If we look at life
courses as state sequences, interesting knowledge may be obtained by seeking patterns in transi-
tions between states. With that perspective, we have shown in Ritschard and Oris (2005) that so
called mobility trees provide interesting alternatives to Markov transition models. Such mobility
trees are classification trees in which the states of a variable of interest, the working status at time
t for instance is taken as response variable, predictors being the same variable at t − 1, t − 2, ...
and other possible covariates. This approach, however, focuses again on a given variable and does
not provide the expected holistic view. To state sequences we may also apply techniques devel-
oped for analysing DNA sequences or texts considered as letter sequences. Among those methods,
optimal-matching-based clustering, which we already discussed under point 3.2, provide valuable
holistic knowledge in the form of categorization of whole life courses.
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5.1 Mining episodes

If we represent life courses as sequences of time stamped events, we may consider using techniques
that have been developed for mining interesting event subsequences or episodes, i.e. collection of
events occurring frequently together. Such methods have been developed for instance for discov-
ering customer buying sequence patterns (Srikant and Agrawal, 1996), detecting signal patterns
that would announce a device or telecommunication network breakdown (Mannila et al., 1997) or
finding sequences of most frequently accessed pages at a web site (Zaki, 2000). Different approaches
for characterizing what interesting sequences were considered in the literature among which promi-
nent approaches are those of Bettini et al. (1996), Srikant and Agrawal (1996) and Mannila et al.
(1997) for which Joshi et al. (2001) proposed a nice unifying and flexible formulation.

Though mining typical event sequences is in some sense a specialized case of the mining of
frequent itemsets, it is much more complex and requires the user to specify time constraints and
select a counting method. Indeed, if there is general agreement about how to count occurrences of
itemsets in the classical unordered framework, there is no such agreement for episodes. In the latter
case, the additional time dimension raises such questions as: What is the maximal time span, i.e.
sequence length we want to analyse? Until which time gap should events be considered to occur
simultaneously? For instance regarding the first of these two questions, if we are interested only
in active life, we would exclude events happening say before 15 and after the legal retirement age.
Likewise for the second one, ending an education cycle in June and starting a first job in December
of the same year could be considered either as simultaneous or parallel events since they occur
the same year or as successive events. Moreover, we may consider that two or more events form a
relevant sequence only if they occur within a given maximal time span or window length. Leaving
home and having a child next year, is not the same as leaving home and having a child 10 years
later. In case of repeating events, we have also to specify how to count multiple ways of forming
similar episodes i.e. subsequences of types of events. For example, assuming a girl starts a job (J)
in 1980 and has children (C) in 1985, 1987. Should we count the episode (J,C) once or twice? For
a rigorous enumeration of all these issues, see Joshi et al. (2001). Clearly, there is no universal
answer to all of them. The choice depends largely on the application domain and may be specific
to each situation and to what the user is expecting.

5.2 Sequential relationships

Beside finding frequent episodes, it is interesting to look at the structure of the episodes. Man-
nila et al. (1997) for instance distinguish between serial (strict sequential order between events)
and parallel (no strict order) episodes and possible combination between these two forms. More
generally, Joshi et al. (2001) represent episode structure in the form of a directed acyclic graph
(DAG), in which nodes contain simultaneous events, an edge between two nodes indicating that
the concerned events are present in that order in the episode.

Such representations provide a convenient way of designing various node, windows and overall
span time constraints. We may also set node constraints regarding the events they should contain so
as to focus the analysis on situations that matter for the problem at hand. For instance, assume we
are interested in finding typical episodes of professional and education events that occur between
leaving home (LH) and the first childbirth (C1). We would then set the first and last node as
depicted in Figure 4 and look for the possible content of the in between nodes. The dashed edge
in Figure 4 indicates an elastic edge, i.e. one that can be extended by adding nodes according to
the discovery process.

LH - ?? - C1

FIGURE 4. A sequential structure with node constraints
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Leaving no free node, we characterize a priori fixed episodes. This may be useful when one is
interested in comparing the distribution among different possible structures of a set of episodes.
For instance considering the SHP biographical data, Figure 5 shows the distribution among three
alternatives structures for the following couples of event types (Education End, 1st Job), (Ed-
ucation End, Marriage), (Education End, 1st Child), (1st Job, 1st Child), (1st Job, Marriage),
(Marriage, 1st Child), (Leaving Home, 1st Job), (Leaving Home, Education End). The alterna-
tive sequencing structures considered are for each couple (x, y): Event x happens before y (noted
x < y), x and y happen the same year (x = y), x happens after y (x > y). From Figure 5 we learn
that it is really exceptional — in 20th century Swiss life courses — to have a child before being
married and also before having a first job. The most common situation is to have the first child
after ending education and after having found a first job. It is also quite common to start the first
job the same year as when we end education.
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FIGURE 5. Distribution of alternative structures of 2-event episodes

5.3 Episode rules

Social scientists are primarily interested in understanding and explaining social processes rather
than in making prediction or classification. They most often formulate their theories in causal form
saying for instance that given characteristics such as being a woman with low education would
favor given behaviors (e.g. low activity rate). In that respect, rules stemming from empirical
evidence of some implication between two typical episodes will undoubtedly be valuable material
for building causal explanations. Though the main aim of mining frequent itemsets is to derive such
association rules, this aspect has not received special attention in the case of sequentially ordered
patterns. For deriving rules we need indeed some suited criterion such as the confidence or some
other interestingness measure. We may indeed use measures similar to those used with unordered
itemsets. Each of them will, however, result in variants depending on the counting method and
various time constraints retained.

An interesting issue for the social scientist is to derive association rules between relevant
episodes each found in one of two parallel sequences such as the sequence of family events and
the professional life course, or the sequence of life events of a woman and the one of her husband.
One solution could be searching frequent episodes in a mix of the two sequences and then restrict
the search of rules among candidates in which the premise and the consequent belong each to a
different sequence. Alternatively, we could search frequent episodes in each type of sequence and
then search rules among candidates obtained by combining frequent episodes from each sequence.



Gilbert Ritschard 11

6 Conclusion

We have seen that there are plenty of ways to look at individual history data, each way having
its own advantages. The aim of this presentation was to give a synthesized view of the avail-
able methods and especially of the kind of outcome we may expect from some data-mining-based
techniques. We have especially put emphasize on survival tree methods and sequence mining tech-
niques. The former have two major advantages: First, their recursive splitting mechanism produce
a tree structured comprehensible output that can be straightforwardly interpreted. Secondly, they
automatically detect relevant interaction effects between explanatory factors. Following a branch
of the tree, we read how states of different variables combine themselves for defining profiles of
homogeneous group regarding the target survival distribution. By thus highlighting interactions,
trees complement regression like methods in which the effect of an explanatory factor is — except
when an interaction is specifically specified — assumed to be independent of the values taken
by the other factors. These tree approaches have, however, also drawbacks. The most important
criticism formulated against trees is their potential instability. Indeed, when two predictors have
at one node almost the same discriminating power, small changes in the data may lead to change
the one that is selected as splitting variable. There is undoubtedly a need for stability criteria, an
issue that has for instance been investigated for classification trees by (Dannegger, 2000). Methods
for mining typical event sequences and relationships between such subsequences are perhaps those
from which me may expect the most highlighting holistic views on life courses. Unlike survival
trees and more generally survival methods, which by their very nature have to focus on a given
type of event, extracting typical episodes from life course sequences does not privilege any type
of event and are best suited for discovering prominent characteristics of complete life trajectories.
Available techniques, at least those flexible enough for allowing a great number of time and node
constraints, should be directly applicable to life course data.

Acknowledgments: This study has been realized within the Swiss National Science Foundation
project SNSF 100012-113998/1. The empirical results are based on data collected within the “Liv-
ing in Switzerland: 1999-2020” project steered by the Swiss Household Panel (www.swisspanel.ch)
of the University of Neuchâtel and the Swiss Statistical Office.
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Peter Lang.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data.
Applied Statistics 29 (2), 119–127.



Gilbert Ritschard 13

Leblanc, M. and J. Crowley (1992). Relative risk trees for censored survival data. Biometrics 48,
411–425.

Leblanc, M. and J. Crowley (1993). Survival trees by goodness of split. Journal of the American
Statistical Association 88 (422), 457–467.

Lesnard, L. (2006). Optimal matching and social sciences. Manuscript, Observatoire Sociologique
du Changement (Sciences Po and CNRS), Paris. (http://laurent.lesnard.free.fr/).

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710.

Levy, R., J.-A. Gauthier, et E. D. Widmer (2006). Entre contraintes institutionnelle et domestique :
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