Methods for Longitudinal Data
Categorical Response

Gilbert Ritschard

Institute for demographic and life course studies, University Geneva
http://mephisto.unige.ch

Doctoral Program, Lausanne, May 20, 2011
Typology of methods for life course data

<table>
<thead>
<tr>
<th>Questions</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration/hazard</td>
<td>state/event sequencing</td>
</tr>
<tr>
<td>descriptive</td>
<td>Survival curves:</td>
</tr>
<tr>
<td></td>
<td>Parametric (Weibull, Gompertz, ...)</td>
</tr>
<tr>
<td></td>
<td>and non parametric (Kaplan-Meier, Nelson-Aalen) estimators.</td>
</tr>
<tr>
<td>causality</td>
<td>Hazard regression models (Cox, ...)</td>
</tr>
<tr>
<td></td>
<td>Survival trees</td>
</tr>
<tr>
<td></td>
<td>Sequence clustering</td>
</tr>
<tr>
<td></td>
<td>Frequencies of given patterns</td>
</tr>
<tr>
<td></td>
<td>Discovering typical episodes</td>
</tr>
<tr>
<td></td>
<td>Markov models</td>
</tr>
<tr>
<td></td>
<td>Mobility trees</td>
</tr>
<tr>
<td></td>
<td>Association rules among episodes</td>
</tr>
</tbody>
</table>
Outline

1. Survival analysis
2. State sequence analysis: brief overview
3. Mobility and transition rates
4. Conclusion
Section outline

1 Survival analysis
 • Survival curves
 • Survival models and trees
Survival Approaches
Event history analysis

- **Survival or Event history analysis** (Mills, 2011)(Blossfeld and Rohwer, 2002)
 - Focuses on one event.
 - Concerned with duration until event occurs or with hazard of experiencing event.

- **Survival curves**: Distribution of duration until event occurs

 \[S(t) = p(T \geq t) \] .

- **Hazard models**: Regression like models for \(S(t, x) \) or hazard

 \[h(t) = p(T = t | T \geq t) \]

 \[h(t, x) = g(t, \beta_0 + \beta_1 x_1 + \beta_2 x_2(t) + \cdots) \] .
Survival Approaches

Event history analysis

- **Survival or Event history analysis** (Mills, 2011) (Blossfeld and Rohwer, 2002)
 - Focuses on one event.
 - Concerned with duration until event occurs or with hazard of experiencing event.
- **Survival curves**: Distribution of duration until event occurs

 \[S(t) = p(T \geq t) . \]

- **Hazard models**: Regression like models for \(S(t, x) \) or hazard

 \[h(t) = p(T = t \mid T \geq t) \]

 \[h(t, x) = g(t, \beta_0 + \beta_1 x_1 + \beta_2 x_2(t) + \cdots) . \]
Survival curves (Switzerland, SHP 2002 biographical survey)

- Leaving home
- Marriage
- 1st Childbirth
- Parents’ death
- Last child left
- Divorce
- Widowing
Section outline

1. Survival analysis
 - Survival curves
 - Survival models and trees
SHP biographical retrospective survey
http://www.swisspanel.ch

- SHP retrospective survey: 2001 (860) and 2002 (4700 cases).
- We consider only data collected in 2002.
- Data completed with variables from 2002 wave (language).

Characteristics of retained data for divorce
(individuals who get married at least once)

<table>
<thead>
<tr>
<th></th>
<th>men</th>
<th>women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1414</td>
<td>1656</td>
<td>3070</td>
</tr>
<tr>
<td>1st marriage dissolution</td>
<td>231</td>
<td>308</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>16.3%</td>
<td>18.6%</td>
<td>17.6%</td>
</tr>
</tbody>
</table>
SHP retrospective survey: 2001 (860) and 2002 (4700 cases).

We consider only data collected in 2002.

Data completed with variables from 2002 wave (language).

Characteristics of retained data for divorce
(individuals who get married at least once)

<table>
<thead>
<tr>
<th></th>
<th>men</th>
<th>women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1414</td>
<td>1656</td>
<td>3070</td>
</tr>
<tr>
<td>1st marriage dissolution</td>
<td>231</td>
<td>308</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>16.3%</td>
<td>18.6%</td>
<td>17.6%</td>
</tr>
</tbody>
</table>
Marriage duration until divorce
Survival curves

Duration of marriage, Women
- 1942 and before
- 1943-1952
- 1953 and after

Duration of marriage, Men
- 1942 and before
- 1943-1952
- 1953 and after
Marriage duration until divorce
Hazard model

- Discrete time model (logistic regression on person-year data)
- \(\exp(B) \) gives the Odds Ratio, i.e. change in the odd \(\frac{h}{1-h} \) when covariate increases by 1 unit.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\exp(B))</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthyr</td>
<td>1.0088</td>
<td>0.002</td>
</tr>
<tr>
<td>university</td>
<td>1.22</td>
<td>0.043</td>
</tr>
<tr>
<td>child</td>
<td>0.73</td>
<td>0.000</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknwn</td>
<td>1.47</td>
<td>0.000</td>
</tr>
<tr>
<td>French</td>
<td>1.26</td>
<td>0.007</td>
</tr>
<tr>
<td>German</td>
<td>1</td>
<td>ref</td>
</tr>
<tr>
<td>Italian</td>
<td>0.89</td>
<td>0.537</td>
</tr>
<tr>
<td>Constant</td>
<td>0.000000000004</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Divorce, Switzerland, Relative risk

LIVES Doctoral Program: Categorical longitudinal data
Survival analysis
Survival models and trees
Hazard model with interaction

- Adding interaction effects detected with the tree approach
- Improves significantly the fit ($\Delta \chi^2 = 0.004$)

<table>
<thead>
<tr>
<th></th>
<th>$\exp(B)$</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>born after 1940</td>
<td>1.78</td>
<td>0.000</td>
</tr>
<tr>
<td>university</td>
<td>1.22</td>
<td>0.049</td>
</tr>
<tr>
<td>child</td>
<td>0.94</td>
<td>0.619</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unkwn</td>
<td>1.50</td>
<td>0.000</td>
</tr>
<tr>
<td>French</td>
<td>1.12</td>
<td>0.282</td>
</tr>
<tr>
<td>German</td>
<td>1</td>
<td>ref</td>
</tr>
<tr>
<td>Italian</td>
<td>0.92</td>
<td>0.677</td>
</tr>
<tr>
<td>b_before_40*French</td>
<td>1.46</td>
<td>0.028</td>
</tr>
<tr>
<td>b_after_40*child</td>
<td>0.68</td>
<td>0.010</td>
</tr>
<tr>
<td>Constant</td>
<td>0.008</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Outline

1. Survival analysis
2. State sequence analysis: brief overview
3. Mobility and transition rates
4. Conclusion
Illustrative \textit{mvad} data set

- McVicar and Anyadike-Danes (2002)’s study of transition from school to employment in North Ireland.
 - Survey of \textbf{712 Irish youngsters}.
 - Sequences describe their follow-up during the \textbf{6 years} after the end of compulsory school (16 years old) and are formed by \textbf{70 successive} monthly observed states between September 1993 and June 1999.

Sates are:
\begin{itemize}
 \item EM \quad \text{Employment}
 \item FE \quad \text{Further education}
 \item HE \quad \text{Higher education}
 \item JL \quad \text{Joblessness}
 \item SC \quad \text{School}
 \item TR \quad \text{Training}
\end{itemize}
Sate sequences - mvad data set

- First sequences (first 20 months)

 Sequence

- compact representation (SPS format)

 Sequence
 [1] (EM,4)-(TR,2)-(EM,64)
 [2] (FE,36)-(HE,34)
 [3] (TR,24)-(FE,34)-(EM,10)-(JL,2)
 [4] (TR,47)-(EM,14)-(JL,9)
State sequences: Graphical display

I-plot, Individual sequences

F-plot, Most frequent patterns

R-plot, Representative sequences

D-plot, Successive transversal distributions

Ht-plot, Transversal entropies

Ms-plot, Sequence of modal states
Pairwise dissimilarities and cluster analysis

- Different metrics permit to compute pairwise dissimilarities between sequences
 - of which optimal matching (Abbott and Forrest, 1986) is perhaps the most popular in social sciences
- Once you have pairwise dissimilarities, you can do
 - cluster analysis of sequences
 - principal coordinate analysis
 - measure the discrepancy between sequences
 - Find representative sequences, either most central or with highest density neighborhood (Gabadinho et al., 2011b)
 - ANOVA-like analysis and Regression trees (Studer et al., 2011)
Cluster analysis: Outcome

- Rendering the cluster contents: transversal state distributions
LIVES Doctoral Program: Categorical longitudinal data
State sequence analysis: brief overview

Cluster analysis: Outcome (2)

- Mean time per state by cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Mean time (weighted n)</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>226.47</td>
<td>EM</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>189.06</td>
<td>EM</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>196.82</td>
<td>EM</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>99.22</td>
<td>EM</td>
</tr>
</tbody>
</table>

- Employment
- Further education
- Higher education
- Joblessness
- School
- Training
Regression tree
Outline

1. Survival analysis
2. State sequence analysis: brief overview
3. Mobility and transition rates
4. Conclusion
Section outline

Mobility and transition rates
 - Markov process
 - Mobility tree
Markov process: Principle

(Brémaud, 1999; Berchtold and Raftery, 2002)

- Assume we have a sequence of states (not necessarily panel data)
- How is state in position \(t \) related to previous states?
- What is the probability to switch to state \(B \) in \(t \) when we are in state \(A \) in \(t - 1 \)?
 - Probability to fall next year into joblessness when we have a partial time job.
 - Probability to stay unemployed next \(t \) when we are currently unemployed.
 - Probability to recover from illness next month.
Homogenous Markov process: Assumptions

- transition probability is the same whatever t (homogeneity)
- a few lagged states summarize all the sequence before t
- 1st order: state in $t - 1$ summarizes all the sequence before t; i.e.; state in t depends only on state in $t - 1$
- 2nd order: states in $t - 1$ and $t - 2$ summarize all the sequence before t; i.e.; state in t depends only on states in $t - 1$ and $t - 2$
- ...

19/5/2011gr 24/37
Homogenous Markov process: Assumptions

- transition probability is the same whatever \(t \) (homogeneity)
- a few lagged states summarize all the sequence before \(t \)
- 1st order: state in \(t - 1 \) summarizes all the sequence before \(t \); i.e.; state in \(t \) depends only on state in \(t - 1 \)
- 2nd order: states in \(t - 1 \) and \(t - 2 \) summarize all the sequence before \(t \); i.e.; state in \(t \) depends only on states in \(t - 1 \) and \(t - 2 \)
- ...

19/5/2011gr 24/37
Blossfeld and Rohwer (2002) sample of 600 job episodes extracted from the German Life History Study

Job episodes partitioned into 3 job length categories
- short (1) = \(\leq 3\) years
- medium (2) = \((3; 10]\) years
- long (3) = \(> 10\) years

Data reorganized into 162 sequences of 2 to 9 job episodes (units with single episode not considered)

How does present episode length depend upon those of preceding jobs?
LIVES Doctoral Program: Categorical longitudinal data
Mobility and transition rates

Markov process

Markov matrices of order 0, 1 and 2

\[
\begin{array}{ccc}
 t-2 & t-1 & t \\
 \uparrow & \uparrow & \uparrow \\
 \downarrow & \downarrow & \downarrow \\
 t-2 & t-1 & t
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>job length at t</th>
<th>half conf. interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Indep</td>
<td>.50</td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.20</td>
</tr>
<tr>
<td>$t-1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>.60</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$t-2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>.37</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.50</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>.45</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

19/5/2011gr 26/37
Main findings

- **First order:**
 - Probability to start short job (1) after a short one (1) is much higher than starting a medium (2) or long job (3)
 - not the case after a medium or long job

- **Second order:**
 - No clear evidence about impact of lag 2 job
 - Main difference concerns long job (3) (but not significant)
 - Confirmed by MTD model, which gives weight 0 to second lag
Two state hidden Markov model

<table>
<thead>
<tr>
<th>Hidden state at t</th>
<th>1</th>
<th>2</th>
<th>half conf. interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t-1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.78</td>
<td>.22</td>
<td>.12</td>
</tr>
<tr>
<td>2</td>
<td>.53</td>
<td>.47</td>
<td>.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hidden state</th>
<th>Job length</th>
<th>half conf. interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>.75</td>
<td>.23</td>
</tr>
<tr>
<td>2</td>
<td>.05</td>
<td>.58</td>
</tr>
</tbody>
</table>

Initial probabilities: 0.56, 0.44, 0.11
Hidden Markov Model (HMM)

- Relaxing homogeneity assumption with HMM
- Fitting a HMM with 2 hidden states
 - distribution of initial state of hidden variable
 - transition matrix of hidden process
 - distribution of transitions to the job length categories associated to each hidden state
LIVES Doctoral Program: Categorical longitudinal data

Mobility and transition rates

Mobility tree

Section outline

3. Mobility and transition rates
 - Markov process
 - Mobility tree
LIVES Doctoral Program: Categorical longitudinal data
Mobility and transition rates
Mobility tree

Mobility tree
Social transition tree with birth place covariate (Ritschard and Oris, 2005)

Low, Clock, High

![Mobility tree diagram]
Outline

1. Survival analysis
2. State sequence analysis: brief overview
3. Mobility and transition rates
4. Conclusion
Conclusion

- Now, it is your turn!
- To chose a method, you first have to
 - Clarify what you are looking for
 - typical patterns, departures from standards, ...
 - specific transitions or holistic view
 - relationships with context (covariates)
 - ...
 - Identify the nature of your data
 - Categorical vs numerical
 - Direct or indirect measures of variable of interest
 - Long or short sequences
 - ...
Thank You!
References I

References II

