Marriage Survival

Gilbert Ritschard

Department of Econometrics and Laboratory of Demography, University of Geneva http://mephisto.unige.ch

Workshop on Sequence Analysis, Lund, May 8-9, 2008

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Marriage Survival Introduction

Table of content

2 Survival Tree

3 Growing a tree with party

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Section content

• Objectives of presentation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

8/5/2008gr 3/31

Objective of this presentation

• Colorize your life courses

• Preliminary results from the analysis of the retrospective Swiss Household Panel (SHP) survey.

▲ロト ▲周ト ▲ヨト ▲ヨト 三回日 のの⊙

- Focus on visualization of life course data.
- Divorce and de-standardization of life Swiss life courses.

Objective of this presentation

• Colorize your life courses

• Preliminary results from the analysis of the retrospective Swiss Household Panel (SHP) survey.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

- Focus on visualization of life course data.
- Divorce and de-standardization of life Swiss life courses.

Objective of this presentation

• Colorize your life courses

• Preliminary results from the analysis of the retrospective Swiss Household Panel (SHP) survey.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

- Focus on visualization of life course data.
- Divorce and de-standardization of life Swiss life courses.

Objective of this presentation

• Colorize your life courses

• Preliminary results from the analysis of the retrospective Swiss Household Panel (SHP) survey.

うしゃ ふぼ く ボット ふ ほう うんの

- Focus on visualization of life course data.
- Divorce and de-standardization of life Swiss life courses.

Two broad approaches

- Survival analysis (Event history analysis): Focus on one event (divorce)
 - Which factors influence the hazard rate of experimenting the event?
 - What is the importance of these factors?
- Sequence analysis: sequence describing whole life course.
 - Similarity between pairs of state sequences (\Rightarrow cluster analysis).
 - Typical event pattern.
 - Turbulence and other instability measures of a sequence.

うしゃ ふぼ く ボット ふ ほう うんの

Two broad approaches

- Survival analysis (Event history analysis): Focus on one event (divorce)
 - Which factors influence the hazard rate of experimenting the event?
 - What is the importance of these factors?
- Sequence analysis: sequence describing whole life course.
 - Similarity between pairs of state sequences (\Rightarrow cluster analysis).
 - Typical event pattern.
 - Turbulence and other instability measures of a sequence.

A D M A

Marriage Survival Survival Tree

Table of content

2 Survival Tree

3 Growing a tree with party

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Marriage Survival Survival Tree Survival Approaches

Section content

2 Survival Tree

- Survival Approaches
- The biographical SHP dataset

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Survival Tree Principle
- Example
- Social Science Issues

Marriage Survival Survival Tree Survival Approaches

Survival Approaches

- Survival or Event history analysis (Blossfeld and Rohwer, 2002)
 - Focuses on one event.
 - Concerned with duration until event occurs or with hazard of experiencing event.

• Survival curves: Distribution of duration until event occurs

 $S(t) = p(T \ge t)$.

• Hazard models: Regression like models for $S(t, \mathbf{x})$ or hazard $h(t) = p(T = t \mid T \ge t)$

$$h(t,\mathbf{x}) = g\left(t,\beta_0+\beta_1x_1+\beta_2x_2(t)+\cdots\right)$$
.

うしゃ ふぼ く ボット ふ ほう うんの

Marriage Survival Survival Tree Survival Approaches

Survival Approaches

- Survival or Event history analysis (Blossfeld and Rohwer, 2002)
 - Focuses on one event.
 - Concerned with duration until event occurs or with hazard of experiencing event.

• Survival curves: Distribution of duration until event occurs

 $S(t) = p(T \ge t)$.

• Hazard models: Regression like models for $S(t, \mathbf{x})$ or hazard $h(t) = p(T = t \mid T \ge t)$

$$h(t,\mathbf{x}) = g\left(t, \beta_0 + \beta_1 x_1 + \beta_2 x_2(t) + \cdots\right)$$
.

うしゃ ふぼ く ボット ふ ほう うんの

Section content

2 Survival Tree

- Survival Approaches
- The biographical SHP dataset

▲ロト ▲周ト ▲ヨト ▲ヨト 三回日 のの⊙

- Survival Tree Principle
- Example
- Social Science Issues

SHP biographical retrospective survey

- SHP retrospective survey: 2001 (860) and 2002 (4700 cases).
- We consider only data collected in 2002.
- Data completed with variables from 2002 wave (language).

Characteristics of retained data for divorce (individuals who get married at least once)

	men	women	Total
Total	1414	1656	3070
1st marriage dissolution	231	308	539
	16.3%	18.6%	17.6%

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

SHP biographical retrospective survey

- SHP retrospective survey: 2001 (860) and 2002 (4700 cases).
- We consider only data collected in 2002.
- Data completed with variables from 2002 wave (language).

Characteristics of retained data for divorce

(individuals who get married at least once)

	men	women	Total
Total	1414	1656	3070
1st marriage dissolution	231	308	539
	16.3%	18.6%	17.6%

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

Marriage Survival

Survival Tree

The biographical SHP dataset

Distribution by birth cohort

8/5/2008gr 11/31

Marriage Survival

Survival Tree

The biographical SHP dataset

Marriage duration until divorce Survival curves

シック・ 正正 (ヨト・ヨト・ (四)・ (コト

Marriage duration until divorce

- Discrete time model (logistic regression on person-year data)
- $\exp(B)$ gives the Odds Ratio, i.e. change in the odd h/(1-h) when covariate increased by 1 unit.

		exp(B)	Sig.
birthyr		1.0088	0.002
university		1.22	0.043
child		0.73	0.000
language	unknwn	1.47	0.000
	French	1.26	0.007
	German	1	ref
	Italian	0.89	0.537
Constant		0.000000004	0.000

Section content

2 Survival Tree

- Survival Approaches
- The biographical SHP dataset

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Survival Tree Principle

- Example
- Social Science Issues

Survival trees: Principle

- Target is survival curve or some other survival characteristic.
- Aim: Partition data set into groups that
- differ as much as possible (max between class variability)
 - Example: Segal (1988) maximizes difference in KM survival curves by selecting split with smallest *p*-value of Tarone-Ware Chi-square statistics

$$TW = \sum_{i} \frac{w_i (d_{i1} - E(D_i))}{(w_i^2 \operatorname{var}(D_i))^{1/2}}$$

• are as homogeneous as possible (min within class variability)

• Example: Leblanc and Crowley (1992) maximize gain in deviance (-log-likelihood) of relative risk estimates.

8/5/2008gr 15/31

```
もって 正則 エル・トレート
```

Survival trees: Principle

- Target is survival curve or some other survival characteristic.
- Aim: Partition data set into groups that
- differ as much as possible (max between class variability)
 - Example: Segal (1988) maximizes difference in KM survival curves by selecting split with smallest *p*-value of Tarone-Ware Chi-square statistics

$$TW = \sum_{i} \frac{w_i (d_{i1} - \mathsf{E}(D_i))}{(w_i^2 \operatorname{var}(D_i))^{1/2}}$$

• are as homogeneous as possible (min within class variability)

 Example: Leblanc and Crowley (1992) maximize gain in deviance (-log-likelihood) of relative risk estimates.

8/5/2008gr 15/31

Survival trees: Principle

- Target is survival curve or some other survival characteristic.
- Aim: Partition data set into groups that
- differ as much as possible (max between class variability)
 - Example: Segal (1988) maximizes difference in KM survival curves by selecting split with smallest *p*-value of Tarone-Ware Chi-square statistics

$$TW = \sum_{i} \frac{w_i (d_{i1} - \mathsf{E}(D_i))}{(w_i^2 \operatorname{var}(D_i))^{1/2}}$$

• are as homogeneous as possible (min within class variability)

 Example: Leblanc and Crowley (1992) maximize gain in deviance (-log-likelihood) of relative risk estimates.

8/5/2008gr 15/31

Marriage Survival Survival Tree Example

Section content

2 Survival Tree

- Survival Approaches
- The biographical SHP dataset

◆□ > ◆□ > ◆三 > ◆三 > 三日 • ● <

• Survival Tree Principle

• Example

Social Science Issues

Divorce, Switzerland, Differences in KM Survival Curves I

Marriage Survival
Survival Tree
Example

Divorce, Switzerland, Differences in KM Survival Curves II

8/5/2008gr 18/31

Sa a

Marriage Survival Survival Tree Example

Divorce, Switzerland, Relative risk

Marriage Survival
Survival Tree
Example

Hazard model with interaction

• Adding interaction effects detected with the tree approach

• improves significantly the fit (sig $\Delta \chi^2 = 0.004$)

		exp(B)	Sig.
born after 1940		1.78	0.000
university		1.22	0.049
child		0.94	0.619
language	unknwn	1.50	0.000
	French	1.12	0.282
	German	1	ref
	Italian	0.92	0.677
b before 40*French		1.46	0.028
b_after_40*child		0.68	0.010
Constant		0.008	0.000
<u> </u>			

Marriage Survival Survival Tree Social Science Issues

Section content

2 Survival Tree

- Survival Approaches
- The biographical SHP dataset

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Survival Tree Principle
- Example
- Social Science Issues

Marriage Survival Survival Tree Social Science Issues

Issues with survival trees in social sciences

Dealing with time varying predictors

- Segal (1992) discusses few possibilities, none being really satisfactory.
- Huang et al. (1998) propose a piecewise constant approach suitable for discrete variables and limited number of changes.
- Room for development ...
- O Multi-level analysis
 - How can we account for multi-level effects in survival trees, and more generally in trees?
 - Conjecture: Should be possible to include unobserved shared effect in deviance-based splitting criteria.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

Marriage Survival Survival Tree Social Science Issues

Issues with survival trees in social sciences

Dealing with time varying predictors

- Segal (1992) discusses few possibilities, none being really satisfactory.
- Huang et al. (1998) propose a piecewise constant approach suitable for discrete variables and limited number of changes.
- Room for development ...
- Ø Multi-level analysis
 - How can we account for multi-level effects in survival trees, and more generally in trees?
 - Conjecture: Should be possible to include unobserved shared effect in deviance-based splitting criteria.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

Marriage Survival Growing a tree with party

Table of content

Introduction

2 Survival Tree

シック・日田 イヨト イヨト 人間を くロト

8/5/2008gr 23/31

Creating duration and censor variables from sequences

• Duration until marriage.

• The seqfpos() function of TraMineR returns first occurrence of state.

```
data(biofam)
# seqfpos returns the position of first occurrence of the provided state
    data,s:e means that we consider the sequence defined in data between columns s and e
#
    states considered are
#
        2 (married without leaving home)
#
        6 (married with child)
    If divorce occurs before any marriage, we assume marriage and divorce the same year
fmar <- data.frame(s2=seqfpos(biofam,svar,2), s3=seqfpos(biofam,svar,3),</pre>
    s6=seqfpos(biofam,svar,6), s7=seqfpos(biofam,svar,7))
# creating duration variable as min value of the 4 states
# create the censor variable mar
fmar <- data.frame(fmar,mar=(fmar$fpos!=Inf))</pre>
# Setting duration to sequence length for censored cases.
fmar$fpos[fmar$fpos==Inf] <- durmax</pre>
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q◇

Creating duration and censor variables from sequences

- Duration until marriage.
- The seqfpos() function of TraMineR returns first occurrence of state.

```
data(biofam)
durmax <- length(svar)</pre>
# seqfpos returns the position of first occurrence of the provided state
    data,s:e means that we consider the sequence defined in data between columns s and e
#
    states considered are
#
        2 (married without leaving home)
#
        6 (married with child)
    If divorce occurs before any marriage, we assume marriage and divorce the same year
fmar <- data.frame(s2=seqfpos(biofam,svar,2), s3=seqfpos(biofam,svar,3),</pre>
    s6=seqfpos(biofam,svar,6), s7=seqfpos(biofam,svar,7))
# creating duration variable as min value of the 4 states
# create the censor variable mar
fmar <- data.frame(fmar,mar=(fmar$fpos!=Inf))</pre>
# Setting duration to sequence length for censored cases.
fmar$fpos[fmar$fpos==Inf] <- durmax</pre>
```

うしゃ ふぼ く ボット ふ ほう うんの

Creating duration and censor variables from sequences

- Duration until marriage.
- The seqfpos() function of TraMineR returns first occurrence of state.

```
data(biofam)
svar <- 10:25
durmax <- length(svar)
# seqfpos returns the position of first occurrence of the provided state
    data,s:e means that we consider the sequence defined in data between columns s and e
#
    states considered are
#
        2 (married without leaving home)
        3 (married and leaved home)
        6 (married with child)
#
#
        7 (divorced)
    If divorce occurs before any marriage, we assume marriage and divorce the same year
fmar <- data.frame(s2=seqfpos(biofam,svar,2), s3=seqfpos(biofam,svar,3),</pre>
    s6=seqfpos(biofam.svar.6), s7=seqfpos(biofam.svar.7))
# creating duration variable as min value of the 4 states
fmar <- data.frame(fmar,fpos=apply(fmar,1,min,na.rm=TRUE))</pre>
# create the censor variable mar
fmar <- data.frame(fmar,mar=(fmar$fpos!=Inf))</pre>
# Setting duration to sequence length for censored cases.
fmar$fpos[fmar$fpos==Inf] <- durmax</pre>
```

ション キョン キョン キョン ひょう

Growing a survival tree with party

```
## Creting the survival object
library(survival)
surv.fmar <- Surv(fmar$fpos,fmar$mar)</pre>
```

covariate data frame

```
coho1 <- (biofam$birthyr < 1940)*"<1940"
coho2 <- (biofam$birthyr >=1940 & biofam$birthyr < 1950)
coho3 <- (biofam$birthyr >=1950)
coho = coho1 + 2*coho2 + 3*coho3
lang <- biofam$plingu02
sex <- biofam$sex
covariates <-data.frame(sex,lang,coho1,coho2,coho3)
library(party)
```

▲ロト ▲周ト ▲ヨト ▲ヨト 三回日 のの⊙

```
stree <- ctree(surv.fmar ~ .,data=covariates)
plot(stree,legend)</pre>
```

Marriage Survival Growing a tree with party

Obtained survival tree for time to marriage

8/5/2008gr 26/31

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

Generating survival curves

```
## Creting the survival object
library(survival)
surv.fmar <- Surv(fmar$fpos,fmar$mar)</pre>
```

surv.fmar <- Surv(fmar\$fpos,fmar\$mar)</pre>

K-M survival curve

```
sf.fmar <- survfit(surv.fmar)
summary(sf.fmar)
plot(sf.fmar)</pre>
```

Fleming-Harrington survival curve

 Marriage Survival Growing a tree with party

Generated survival curves

Fleming-Harrington Survival Curves, Time to Marriage

Time from 15 to marriage

シック・日田 イヨト イヨト 人間を くロト

Marriage Survival

Growing a tree with party

THANK YOU!

▲ロト ▲周ト ▲ヨト ▲ヨト 三回日 のの⊙

8/5/2008gr 29/31

Divorce, Switzerland, Differences in KM Survival Curves I

8/5/2008gr 30

Marriage Survival
Appendix
Zoomed tree

References

- Blossfeld, H.-P. and G. Rohwer (2002). Techniques of Event History Modeling, New Approaches to Causal Analysis (2nd ed.). Mahwah NJ: Lawrence Erlbaum.
- Huang, X., S. Chen, and S. Soong (1998). Piecewise exponential survival trees with time-dependent covariates. *Biometrics* 54, 1420–1433.
- Leblanc, M. and J. Crowley (1992). Relative risk trees for censored survival data. *Biometrics* 48, 411–425.
- Segal, M. R. (1988). Regression trees for censored data. Biometrics 44, 35-47.
- Segal, M. R. (1992). Tree-structured methods for longitudinal data. *Journal of the American Statistical Association 87*(418), 407–418.

うしゃ ふぼ く ボット ふ ほう うんの