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Objectives

@ lllustrate some of the many exploratory features of TraMineR

@ A package for Life Trajectory Mining in R

o State sequences (education, full time, at home, part time, ...)
o Event sequences (ending education, starting job, ...)
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Objectives

@ lllustrate some of the many exploratory features of TraMineR

@ A package for Life Trajectory Mining in R

o State sequences (education, full time, at home, part time, ...)
o Event sequences (ending education, starting job, ...)

@ Highlighting results about Swiss occupational trajectories

o Differences between women and men
e Evolution across birth cohorts

Using Data from the 2002 biographical retrospective survey
carried on by the Swiss Household Panel
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@ Introduction

@ TraMineR
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TraMineR's features

Handling of longitudinal data and conversion between various sequence formats
Plotting sequences (density plot, frequency plot, index plot and more)
Centro-type and discrepancy measure of a set of sequences

Individual longitudinal characteristics of sequences (length, time in each state,
longitudinal entropy, turbulence and more)

Sequence transversal characteristics by age point (transversal state distribution,
transversal entropy, modal state)

Other aggregated characteristics (transition rates, average duration in each
state, sequence frequency)

Dissimilarities between pairs of sequences (Optimal matching, longest common
subsequence, Hamming, Dynamic Hamming, Multichannel and more)

ANOVA-like analysis of sequences and tree structured ANOVA from
dissimilarities

Extracting frequent event subsequences

Identifying most discriminating event subsequences

Association rules between subsequences
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@ Introduction

@ Data
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The data

@ Derived from 2002 biographical SHP survey
@ Yearly data

@ 1503 life trajectories between ages 20 and 45 (25 years length)
e Focus on

o Occupational trajectories (8 states)
o Cohabitational trajectories (10 states)
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@ State sequences
@ Basic plots for state sequences
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Rendering state sequences
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Mean time in each state
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Section outline

@ State sequences

@ Characterizing a set of sequences
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Characterizing a set of sequences

@ Sequence of transversal measures (modal state, between

entropy, ...)
id t1 b ft3
1 B B D
2 A B C
3 B B A
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Characterizing a set of sequences

@ Sequence of transversal measures (modal state, between

entropy, ...)
id t1 b ft3
1 B B D
2 A B C
3 B B A

e Summary of longitudinal measures (within entropy, transition
rates, mean duration ...)
id 1 b 3
1 B B D
2 A B C
3 B B A
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Characterizing a set of sequences

@ Sequence of transversal measures (modal state, between

entropy, ...)
id t1 b ft3
1 B B D
2 A B C
3 B B A

e Summary of longitudinal measures (within entropy, transition
rates, mean duration ...)
id 1 b 3

1 B B D
2 A B C
3 B B A

@ Other global characteristics: Centro-type sequence, diversity
of sequences, ...
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rogeneity: Sequence of transversal entropies

Cohabitational vs Occupational

Cohabitational Trajectories Occupational Trajectories
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erogeneity: Sequence of transversal entropies

Occupational, Women vs Men

Women: Occupational Trajectories Men: Occupational Trajectories
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@ State sequences

@ Individual longitudinal characteristics
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Longitudinal entropy

Men: Occupational Trajectories Women: Occupational Trajectories
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Number of distinct successive states (i.e. transitions)

Men: Occupational Trajectories Women: Occupational Trajectories
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Entropy versus Number of transitions
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Sequence complexity

Combines longitudinal entropy and number of transitions

Men: Occupational Trajectories Women: Occupational Trajectories
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@ State sequences

@ Computing and exploring pairwise dissimilarities
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Pairwise dissimilarities between sequences

@ Distance between sequences
o Different metrics (LCP, LCS, OM, HAM, DHD, ...)
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Pairwise dissimilarities between sequences

@ Distance between sequences
o Different metrics (LCP, LCS, OM, HAM, DHD, ...)
@ Once we have pairwise dissimilarities, we can

e Determine a central sequence (centro—type)
e Measure the discrepancy between sequences
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Pairwise dissimilarities between sequences

@ Distance between sequences
o Different metrics (LCP, LCS, OM, HAM, DHD, ...)
@ Once we have pairwise dissimilarities, we can

e Determine a central sequence (centro—type)

e Measure the discrepancy between sequences
o Cluster a set of sequences

o MDS scatterplot representation of sequences
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Pairwise dissimilarities between sequences

@ Distance between sequences
o Different metrics (LCP, LCS, OM, HAM, DHD, ...)
@ Once we have pairwise dissimilarities, we can

e Determine a central sequence (centro—type)

Measure the discrepancy between sequences

Cluster a set of sequences

MDS scatterplot representation of sequences
Discrepancy analysis of a set of sequences (ANOVA)
Tree Structured Discrepancy Analysis (Induction trees)
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Deriving clusters from pairwise dissimilarities

@ For each of the two sets of sequences: cohabitational and
occupational

e Compute Pairwise dissimilarities (a 1503 x 1503 matrix)

@ Here, we used Optimal Matching (OM)

o For each pair {x,y} of sequences, OM is the minimal cost of
transforming one sequence into the other

o insert/deletion (indel) cost =1
@ substitution cost ¢;j = ¢j;i =2 — p(i¢ | je—1) — p(e | it—1)
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Deriving clusters from pairwise dissimilarities

@ For each of the two sets of sequences: cohabitational and
occupational

e Compute Pairwise dissimilarities (a 1503 x 1503 matrix)

@ Here, we used Optimal Matching (OM)

o For each pair {x,y} of sequences, OM is the minimal cost of
transforming one sequence into the other

o insert/deletion (indel) cost =1
@ substitution cost ¢;j = ¢j;i =2 — p(i¢ | je—1) — p(e | it—1)

@ Cluster by plugging obtained dissimilarity matrix in any cluster
algorithm

@ We used an agglomerative hierarchical method with Ward's
criteria

@ and retained partition into 5 clusters
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Cluster analysis: determining typologies

Type 1: Full Time Trajectoires (52 %) Type 2: Mixed Occupational Trajectories (22 %) Type 3: Return Trajectories (11 %)
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Cluster analysis: i-plots (sorted by 1st MDS factor)
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Cluster analysis: representative sequences

Type 1: Full Time Trajectoires (52 %) Type 2: Mixed Occupational Trajectories (22 %)

(A) Discrepancy (mean dist. to center)
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Birth year distribution by cluster

Type 1: Full Time Trajectoires (52 %) Type 2: Mixed Occupational Trajectories (22 %) Type 3: Return Trajectories (11 %)
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MDS: Scatterplot view of sequences
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Section outline

@ State sequences

@ Analysis of sequence discrepancy (ANOVA)
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Dispersion of the set of sequences

@ From the distance matrix, we get the pseudo-variance of the
set of sequences.

@ Sum of squares SS can be expressed in terms of distances
between pairs

n

S5 = Yi-9 = 3> (i)
i=1 i=1 j=i+1

= XY e

i=1 j=i+1
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Dispersion of the set of sequences

@ From the distance matrix, we get the pseudo-variance of the
set of sequences.

@ Sum of squares SS can be expressed in terms of distances
between pairs

n

SS = > (i—-y)? = %Z > (i — y)?

i=1 i=1 j=i+1
n n
1
— 7§ E " dj
n

i=1 j=i+1

@ Setting dj; equal to OM, LCP, LCS ... distance, we get SS.
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Dispersion of the set of sequences

@ From the distance matrix, we get the pseudo-variance of the
set of sequences.

@ Sum of squares SS can be expressed in terms of distances
between pairs

n

SS = > (yi—y)P = %Z > bi—y)
i=1 i=1 j=i+1
1 n n
= > 2 di

i=1 j=i+1

@ Setting dj; equal to OM, LCP, LCS ... distance, we get SS.
o Can apply ANOVA principle (Studer et al., 2009).
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Analysis of sequence discrepancy

o ANOVA like analysis based on pairwise dissimilarities

e We decompose the SS (Sum of squares equivalent)

55+ = S5 + SSw

@ Here, with the formula shown earlier

SSr = %chfﬁ

i=1 j=i+1

SSwo = Z( szuvg)

Ng (= 1 j=i+1
S5 = SSTfSSW
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Pseudo R-square and ANOVA Table

@ ANOVA table for m groups

Discrepancy df Mean Discr. F
ss SSB 4
Between SSg dfg =m—1 Tﬂ“: SSw #
Within SSw dfw =3, ng—m %vvv
Total SSt dfr =n—1
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Pseudo R-square and ANOVA Table

@ ANOVA table for m groups

Discrepancy df Mean Discr. F
ss SSB 4
Between SSg dfg =m—1 Tﬂ“: SSw #
Within SSw dfw =3, ng—m %vvv
Total SSt dfr =n—1
e Pseudo R?
Rz _ %8

SSr
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Pseudo F

@ Pseudo F

SSg/(m—1)
SSw/(n— m)
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Pseudo F

@ Pseudo F

Fo_ SSg/(m—1)
~ SSw/(n—m)
Normality is not defendable in this setting.
F cannot be compared with an F distribution.

The significance is assesses through a permutation test

Permutation test: iteratively randomly reassign each covariate
profile to one of the observed sequence and recompute the F.

Empirical distribution of F under independence.
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Analysis of sequence discrepancy

@ Running an ANOVA like analysis for cohort3b

Pseudo ANOVA table:

SSs  df MSE
Exp 106.4437 2 53.22183
Res 15645.8712 1500 10.43058
Total 15752.3148 1502 10.48756

Test values (p-values based on 999 permutation):
PseudoF PseudoR2 PseudoF_Pval PseudoT PseudoT_Pval
5.10248 0.006757335 0 7.361347 0

Variance per level:

n variance
1910-1924 71 7.713761
1925-1945 659 9.651546
1946-1957 773 11.303784
Total 1503 10.480582
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Distribution of pseudo F

Distribution of PseudoF
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Multiple factor analysis

@ Generalize previous approach for multiple covariates.
@ Here, we consider Type Il effects

@ Measure the additional contribution of each covariate v when
we accounted for all other covariates.

@ The F statistics reads

. (SS5.—555,)/p
Y SSw./(n—m—1)

where the SSg_ and SSy, are the explained and residual sums of squares of the
full model, SSg, the explained sum of squares of the model after removing
variable v, and p the number of indicators or contrasts used to encode the

covariate v.

@ Significance is assessed again through permutation tests.
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Running a Multiple factor analysis

Variable PseudoF PseudoR2 p_value
1 sex 486.157573 0.222836269 0.000000000
2 cohort3b 5.297978 0.004856786 0.000999001
3 edu_lev 33.998319 0.046750636 0.000000000
4 Total 114.523325 0.314748465 0.000000000
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Differences over time

@ How do differences between groups vary over time?

@ At which age do trajectories most differ across birth cohorts?
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Differences over time

@ How do differences between groups vary over time?

@ At which age do trajectories most differ across birth cohorts?
o Compute R? for short sliding windows (length 2)

@ We get thus a sequence of R?, which can be plotted
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Differences over time

How do differences between groups vary over time?

At which age do trajectories most differ across birth cohorts?
Compute R? for short sliding windows (length 2)

We get thus a sequence of R?, which can be plotted

Similarly, we can plot series of

o total residual discrepancy (SSy/)
o residual discrepancy of each group (55¢)
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Plotting R-squares over time
Birth cohorts
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Plotting residual discrepancy over time
Birth cohorts
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Plotting residual discrepancy over time
Birth cohorts
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@ State sequences

@ Tree structured discrepancy analysis
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Tree structured discrepancy analysis

@ Objective: Find the most important predictors and their
interactions.

@ lteratively segment the cases using values of covariates
(predictors)

@ Such that groups be as homogenous as possible.
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Tree structured discrepancy analysis

Objective: Find the most important predictors and their
interactions.

Iteratively segment the cases using values of covariates
(predictors)

Such that groups be as homogenous as possible.

At each step, we select the covariate and split with highest R?.

Significance of split is assessed through a permutation F test.

Growing stops when the selected split is not significant.
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Growing the tree

Dissimilarity tree
Global R2: 0.229
|-- Root [ 1503 ] var: 10.5
|-> sex R2: 0.179
|-- man [ 752 ] var: 4.37
|-> edu_lev R2: 0.143
|-- University [ 157 ] var: 6.28
|-- Compulsory/College+Prof/Prof .HS [ 595 ] var: 3.08
|-- woman [ 751 ] var: 12.8
|-> edu_lev R2: 0.0206
|-- Compulsory/College+Prof [ 632 ] var: 12.5
|-> edu_lev R2: 0.00905
|-- Compulsory [ 116 ] var: 12.0
|-- College+Prof [ 516 ] var: 12.5
|-> cohort3b R2: 0.00714
|-- 1946-1957 [ 280 ] var: 12.5
|-- 1910-1924/1925-1945 [ 236 ] var: 12.2
|-- Prof .HS/University [ 119 ] var: 13.1
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Graphical Tree
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: 1503 Var: 10.5
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© Event sequences
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Event sequences

@ Time stamped events

(end education, 21) (start full time job, 21) (at home, 28) (start part time, 29)
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Event sequences

@ Time stamped events

(end education, 21) (start full time job, 21) (at home, 28) (start part time, 29)

Which are the most typical sequencings?

Which are the most typical events that occur after the
sub-sequence (leaving home, ending education)?

Which sequencings do most differ among groups?
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Event sequences

@ Time stamped events

(end education, 21) (start full time job, 21) (at home, 28) (start part time, 29)

Which are the most typical sequencings?

Which are the most typical events that occur after the
sub-sequence (leaving home, ending education)?

Which sequencings do most differ among groups?

Unlike state sequences, event sequences are hard to visualize

uuuuuuuuuu
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Events, Transitions and States

An event occurs at a given time
(leaving home, starting job, ...)

Transition: set of events occurring simultaneously
A transition corresponds to a state change
Easy to transform between state and transition sequences

Converting to and from events requires additional information
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Event sequences

Events, Transitions and States

@ An event occurs at a given time
(leaving home, starting job, ...)
@ Transition: set of events occurring simultaneously
@ A transition corresponds to a state change
o Easy to transform between state and transition sequences
@ Converting to and from events requires additional information
@ To illustrate, we consider hereafter the events defined by state

changes in our previous trajectories
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ing sub-sequences
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Event sequences
Between sex, residuals
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Event sequences

ing between birth cohorts
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Event sequences

residuals
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Conclusion

Outline

@ Conclusion
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Conclusion

Conclusion 1: about sequence analysis

o Analyzing trajectories until 45, implies ignoring recent
generations

@ Most recent birth year is 1957 (2002 — 45)
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Conclusion 1: about sequence analysis

o Analyzing trajectories until 45, implies ignoring recent
generations

@ Most recent birth year is 1957 (2002 — 45)

@ Missing data in sequences is a crucial issue

@ TraMineR permits different handling for left, right and in
between missings
e consider as a specific state
e drop (shifts state sequences left)
e impute, but how?
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Conclusion

Conclusion 1: about sequence analysis

Analyzing trajectories until 45, implies ignoring recent
generations

Most recent birth year is 1957 (2002 — 45)

Missing data in sequences is a crucial issue

TraMineR permits different handling for left, right and in
between missings
e consider as a specific state
e drop (shifts state sequences left)
e impute, but how?
Weights
o Can be handled in sequence rendering (weighted transversal
characteristics)
o Not really an issue for computing dissimilarities and
longitudinal charcateristics
o We are working on a solution for permutation tests




Conclusion

Conclusion 2: extending analysis

@ Since it runs in R, TraMineR’s outcome can be easily
combined in a same script with other R procedures

@ We have shown: cluster analysis, MDS, ...
@ In Widmer and Ritschard (2009), we studied
e Relationship between occupational and cohabitational
trajectories by regressing longitudinal entropies of each of them
on both occupational and cohabitational clusters while
controlling for birth cohorts and sex
e Studied also cluster membership by means of logistic
regressions.
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Conclusion

Conclusion 3: about TraMineR

@ TraMineR is a unique powerful tool for discrete sequences

@ Can do much more than shown in this presentation, for
instance

@ sequence data management

e conversion between event and state sequences

e multiple metrics, including multi-channel for parallel sequences
e dissimilarities between event sequences

e discovering association rules between event-subsequences

]

@ ... and, as R, it is available for free on the CRAN
http://cran.r-project.org

@ See also the package web page
http://mephisto.unige.ch/traminer
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Conclusion

Thank You!
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