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Longitudinal Analysis Survival Trees Mining Frequent Episodes Summary

Motivation

Individual life course paradigm.
Following macro quantities (e.g. #divorces, fertility rate, mean
education level, ...) over time
insufficient for understanding social behavior.
Need to follow individual life courses.

Data availability
Large panel surveys in many countries
(SHP, CHER, SILC, GGP, ...)
Biographical retrospective surveys (FFS, ...).
Statistical matching of censuses, population registers and other
administrative data.
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Motivation

Need for suited methods for discovering interesting knowledge
from these individual longitudinal data.
Social scientists use

Essentially Survival analysis (Event History Analysis)
More rarely sequential data analysis (Optimal Matching,
Markov Chain Models)

Could social scientists benefit from data-mining approaches?
Which methods?
Are there specific issues with those methods for social
scientists?
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Alternative views of Individual Longitudinal Data

Table: Time stamped events, record for Sandra

ending secondary school in 1970 first job in 1971 marriage in 1973

Table: State sequence view, Sandra

year 1969 1970 1971 1972 1973
civil status single single single single married
education level primary secondary secondary secondary secondary
job no no first first first
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Issues with life course data

Incomplete sequences
Censored and truncated data:
Cases falling out of observation before experiencing an event of
interest.
Sequences of varying length.

Time varying predictors.
Example: When analysing time to divorce, presence of children
is a time varying predictor.

Data collected by clusters
Example: Household panel surveys.
Multi-level analysis to account for unobserved shared
characteristics of members of a same cluster.
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Multi-level: Simple linear regression example
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Classical statistical approaches
Survival Approaches

Survival or Event history analysis (Blossfeld and Rohwer, 2002)
Focuses on one event.
Concerned with duration until event occurs
or with hazard of experiencing event.

Survival curves: Distribution of duration until event occurs

S(t) = p(T ≥ t) .

Hazard models: Regression like models for S(t, x) or hazard
h(t) = p(T = t | T ≥ t)

h(t, x) = g
(
t, β0 + β1x1 + β2x2(t) + · · ·

)
.
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Survival curves (Switzerland, SHP 2002 biographical survey)
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Analysis of sequences

Frequencies of given subsequences
Essentially event sequences.
Subsequences considered as categories ⇒ Methods for
categorical data apply (Frequencies, cross tables, log-linear
models, logistic regression, ...).

Markov chain models
State sequences.
Focuses on transition rates between states.
Does the rate also depend on previous states?
How many previous states are significant?

Optimal Matching (Abbott and Forrest, 1986) .
State sequences.
Edit distance (Levenshtein, 1966; Needleman and Wunsch,
1970) between pairs of sequences.
Clustering of sequences.
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Optimal Matching

Example from (Gauthier, Widmer, Bucher, and Notredame, 2007)
Professional life course, age 16-64, Switzerland
SHP retrospective survey, ∼ 3000 cases
5 clusters: Full Time, Part Time, Come Back, Home, Erratic
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Typology of methods for life course data

Issues
Questions duration/hazard state/event sequencing
descriptive • Survival curves: • Optimal matching

Parametric clustering
(Weibull, Gompertz, ...) • Frequencies of given

and non parametric patterns
(Kaplan-Meier, Nelson- • Discovering typical
Aalen) estimators. episodes

causality • Hazard regression models • Markov models
(Cox, ...) • Mobility trees

• Survival trees • Association rules
among episodes

14/8/2007gr 13/34
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Survival trees: Principle

Target is survival curve or some other survival characteristic.
Aim: Partition data set into groups that
differ as much as possible (max inter class variability)

Example: Segal (1988) maximizes difference in KM survival
curves by selecting split with smallest p-value of Tarone-Ware
Chi-square statistics

TW =
∑

i

wi

(
di1 − E(Di)

)
(

w2
i var(Di)

)1/2

are as homogeneous as possible (min intra class variability)
Example: Leblanc and Crowley (1992) maximize gain in
deviance (-log-likelihood) of relative risk estimates.
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Divorce, Switzerland, Differences in KM Survival Curves I
Zoom
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Divorce, Switzerland, Differences in KM Survival Curves II

0 10 20 30 40

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Cohort <=1940 & Non French Speaking & University

Cohort <=1940 & Non French Speaking & < University

Cohort <=1940 & French Speaking

Cohort >  1940 & No Child & University

Cohort > 1940 & No Child & < University

Cohort >  1940 & Child & German or Italian Speaking

Cohort >  1940 & Child & French or Unknown Speaking

14/8/2007gr 17/34



Longitudinal Analysis Survival Trees Mining Frequent Episodes Summary

Divorce, Switzerland, Relative risk
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Issues with survival trees in social sciences

1 Dealing with time varying predictors
Segal (1992) discusses few possibilities, none being really
satisfactory.
Huang et al. (1998) propose a piecewise constant approach
suitable for discrete variables and limited number of changes.
Room for development ...

2 Multi-level analysis
How can we account for multi-level effects in survival trees,
and more generally in trees?
Conjecture: Should be possible to include unobserved shared
effect in deviance-based splitting criteria.

14/8/2007gr 19/34
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Mining Frequent Episodes

Survival approaches not useful in a unitary (holistic)
perspective of the whole life course.
Sequence analysis of whole collection of life events better
suited for such holistic approach (Billari, 2005).
Popular methods in social sciences

Optimal Matching.
Markov Models.

What can we expect from frequent episodes mining?
GSP (Srikant and Agrawal, 1996)
MINEPI, WINEPI (Mannila et al., 1997)
TCG, TAG (Bettini et al., 1996)
SPADE (Zaki, 2001)
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Frequent episodes. What is it?

Episode: Collection of events occurring frequently together.
Mining typical episodes:

Specialized case of mining frequent itemsets.
Time dimension ⇒ Partially ordered events.

More complex than unordered itemsets: User must
specify time constraints (and episode structure constraints).
select a counting method.
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Episode structure constraints

For people who leave home within 2 years from their 17, what are
typical events occurring until they get married and have a first
child?

LH,17

w = 2

??

w = 1

C1

M
(0, 4)

(0,
3)

(0, 1, 10)

elastic

event constraints

parallel

node constraint

edge constraints
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Counting methods (Joshi et al., 2001)

20 21 22 23 24

U U
U
C C C

Searching (U,C)
min gap= 1, max gap= 2, win size= 2

indiv. with episode COBJ = 1

windows with episode CWIN = 3

min win. with episode CminWIN = 2

distinct occurrences CDIS_o = 5

dist. occ. without overlap CDIS = 3
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Example: Counting alternate structures (COBJ, no max gap)
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Switzerland, SHP 2002 biographical survey (n = 5560).
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Rules between episodes

Social scientists like causal explanations.
Empirically assessed rules are valuable material in that respect.

Little attention paid to this aspect in the literature on
frequent subsequences.

Mined episodes are already structured: if (U,C) is a frequent
episode, then we know that C often follows U.
Deriving association rules from frequent ordered patterns is
similar to what is done with unordered itemsets.

Rule relevance criteria: confidence, surprisingness, implication
strength, ...
Their value depends on the selected counting method.
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Issues with episode rules in social sciences

Parallel life courses:
Family events and professional life course.
Life courses of each partner of a couple.

Mining associations between frequent episodes of a sequence
with those of its parallel sequence.

Frequent episodes from mix of the 2 sequences, and then
restrict search of rules among candidates with premise and
consequence belonging to a different sequence.
Frequent episodes from each sequence, and then
search rules among candidates obtained by combining frequent
episodes from each sequence.

Accounting for multi-level effects when validating rules.
Is rule relevant among groups, or within groups?
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Summary

Data mining approaches (survival trees, frequent episodes)
have promising future in life course analysis.

Complement classical statistical outcomes with new insights.

Their use within social sciences raises specific issues:
Accounting for multi-level effects when growing survival tree or
mining association rules.
Handling time varying predictors in survival trees.
Selecting relevant counting methods (event dependent)?
Suitable criteria for measuring association strength between
frequent episodes.
...
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Thank You!Thank You!

14/8/2007gr 29/34



Appendix References

Divorce, Switzerland, Differences in KM Survival Curves I
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