Socioprofessional Dynamics in the 19th Century Geneva

Gilbert Ritschard

Dept of Econometrics and Laboratory of Demography and Family Studies University of Geneva http://mephisto.unige.ch

Séminaire d'actualité économique SAE, March 31, 2008

Outline

- Introduction
- 2 From structure to dynamics
- Synthetic analysis
- 4 Conclusion

Section outline

- Introduction
 - The research project
 - Historical Context
 - Data

Research project

The work presented in this seminar is part of the FNS project

- Early Life Conditions, Social Mobility and Longevity in Later Life. A Contribution to the Urban Population History in 19th Century French-Speaking Switzerland
- FN 1114-068113, 2003-2004, and FN 100012-105478, 2005-06.
- Main applicant: prof. Michel Oris, Dept of Economic History and Laboratory of Demography
- It is based on papers (Oris et al., 2006; Oris and Ritschard, 2007)
 written with
 - Michel Oris
 - Grazyna Ryczkowska (De Montmollin)

Section outline

- Introduction
 - The research project
 - Historical Context
 - Data

• Eventful political, economic and demographic development

- City enclosed inside walls: lack of lands ⇒ prevents development of agricultural sector.
 - \Rightarrow turns to trade and production of luxury items: textile (\rightarrow beginning 19th) and clocks, jewelery, music boxes (Fabrique)
- Sector turned to exportation, hence sensitive to all the 19th political and economic crises.
 [1798-1816] French period (period of crises)
 [1816-1846] "Restauration" (annexation of the surrounding French parishes), economic boom during the 30's
 [1849- ...] Modernization of economic structure, destruction of the fortifications

- Eventful political, economic and demographic development
- City enclosed inside walls: lack of lands ⇒ prevents development of agricultural sector.
 - \Rightarrow turns to trade and production of luxury items: textile (\rightarrow beginning 19th) and clocks, jewelery, music boxes (Fabrique)
- Sector turned to exportation, hence sensitive to all the 19th political and economic crises.
 [1798-1816] French period (period of crises)
 [1816-1846] "Restauration" (annexation of the surrounding French parishes), economic boom during the 30's
 [1849- ...] Modernization of economic structure, destruction of the fortifications

Geneva in the 19th century: Historical background

- Eventful political, economic and demographic development
- City enclosed inside walls: lack of lands ⇒ prevents development of agricultural sector.
 - \Rightarrow turns to trade and production of luxury items: textile (\rightarrow beginning 19th) and clocks, jewelery, music boxes (Fabrique)
- Sector turned to exportation, hence sensitive to all the 19th political and economic crises.
 [1798-1816] French period (period of crises)
 [1816-1846] "Restauration" (annexation of the surrounding French parishes), economic boom during the 30's
 [1849- ...] Modernization of economic structure, destruction of the fortifications

Historical Context: Demographical aspects

- "Calvinist Rome" has to open its doors
 - Strong population growth: from 21'237 (in 1806) to 31'200 (in 1850). however natural balance = only +557 !!!
 - Massive Immigration.
 - Catholics: 11 % 1816 28 % 1843 46 % 1900
- Mix of traditional malthusianism

Women age at 1st marriage = 28, 20% women final celibacy

modern neo-malthusianism birth control

 Le Roy Ladurie's hypothesis: duality of urban populations enrooted, stable
 immigrant, turbulent !!!

Historical Context: Demographical aspects

- "Calvinist Rome" has to open its doors
 - Strong population growth: from 21'237 (in 1806) to 31'200 (in 1850). however natural balance = only +557 !!!
 - Massive Immigration.
 - Catholics: 11 % 1816 28 % 1843 46 % 1900
- Mix of

traditional malthusianism

Women age at 1st marriage = 28, 20% women final celibacy

modern neo-malthusianism

birth control

 Le Roy Ladurie's hypothesis: duality of urban populations enrooted, stable ⇔ immigrant, turbulent !!!

Section outline

- Introduction
 - The research project
 - Historical Context
 - Data

Data

- Data from 6 censuses 1816, 1822, 1828, 1831, 1837, 1843. individual with name beginning with letter 'B'.
- Socioprofessional groups 1200 professions grouped into 5 classes:
 - Unskilled workers,
 - Fabric (clockmaker),
 - Craftsmen.
 - Businessmen.
 - Public and private services
 - Inactive.
- Social statuses 1200 professions grouped into 5 classes:
 - Unknown,
 - Unskilled worker,
 - Skilled worker,
 - White collar,
 - Petite et Moyenne Bourgeoisie
 - Elites.

Data

- Data from 6 censuses 1816, 1822, 1828, 1831, 1837, 1843, individual with name beginning with letter 'B'.
- Socioprofessional groups 1200 professions grouped into 5 classes:
 - Unskilled workers,
 - Fabric (clockmaker),
 - Craftsmen,
 - Businessmen,
 - Public and private services
 - Inactive.
- Social statuses 1200 professions grouped into 5 classes:
 - Unknown,
 - Unskilled worker,
 - Skilled worker,
 - White collar.
 - Petite et Moyenne Bourgeoisie
 - Elites.

Rebuilded life trajectories

- 35'592 individual records, 10'723 household records
- Matching of censuses: 24'718 life trajectories
- Dynamics: Analysis of transitions (on 6 years intervals)

```
1816 \rightarrow 1822
```

 $1822 \rightarrow 1828$

 $1831 \, \rightarrow \, 1837$

 $1837 \to 1843$

including new comers and those who dropped out.

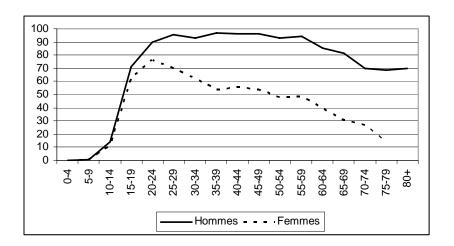
Introduction

000000000

Transition	GSP in t	GSP in $t + 6$	other condition
stays inactive	inactive	inactive	
becomes active	inactive	active	
stable	active	active	GSP(t) = GSP(t+6)
mobile	active	active	$GSP(t) \neq GSP(t+6)$
leaves activity	active	inactive	
new comer	non present	present	
disapears	present	non present	

Socioprofessional groups and social statuses (at t)

Social Status	Unknw	Unsk.	Skilled	White	P.M.B.	Elite	Total
GSP		worker	worker	collar			
Inactive	4467	23	0	79	1	344	4914
Unskilled	274	1672	96	118	3	0	2163
Clockmaker	0	71	1330	0	213	0	1614
Craftsmen, skilled	0	173	1527	3	80	0	1783
Business	0	112	64	21	537	7	741
Public/private serv.	0	28	18	37	156	82	321
Total	4741	2079	3035	258	990	433	11536


Introduction

000000000

- 2 From structure to dynamics
- Synthetic analysis

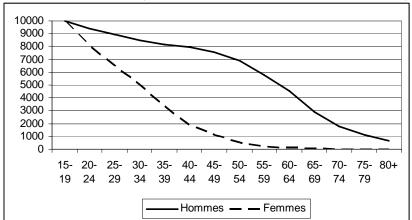
- 2 From structure to dynamics
 - Labor force engagement rate by age and sex (at t)
 - ullet Inactive and active populations, from t to t+6
 - Leaving active life
 - Dynamics of socioprofessional groups

Labor force engagement rate by age and sex (at t)

Section outline

- Prom structure to dynamics
 - Labor force engagement rate by age and sex (at t)
 - Inactive and active populations, from t to t+6• Leaving active life
 - Dynamics of socioprofessional groups

Dynamics from t to t + 6


Dynamics of inactive and active populations from t to t+6

Transition	Inactive	Active	Total
Counts in t	4914	6622	11536
1. Stays inactive	1922	0	1922
2. Stays active	0	2604	2604
3. Leaves activity	362		362
4. Becomes active		666	666
Balance 4 — 3	-304	304	0
5. Drops out from Geneva	2326	3656	5982
6. New comer in Geneva	3057	4222	7279
Balance 6 — 5	731	566	1297
Counts in $t+6$	5341	7492	12833
Gains between t and $t + 6$	427	870	1297

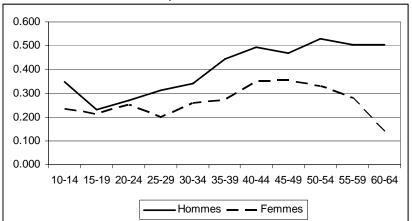
Leaving active life

Introduction

Survival curves by sex (surviving = remaining in active population)

Section outline

- 2 From structure to dynamics
 - Labor force engagement rate by age and sex (at t)
 - Inactive and active populations, from t to t+6 Leaving active life
 - Dynamics of socioprofessional groups


Changes between t and t + 6, rates

Dynamics of socioprofessional groups of actives between t et t+6

Groups	unskilled	fabric	craftsmen skilled workers	business	public and private services	Total	
Stable in % of t	20.8	45.2	31.4	32.8	27.4	30.9	
‰ (with respect to me	% (with respect to mean count between t and $t+6$)						
2. Leaves activity	48.2	39.5	49.3	85.1	62.3	51.3	
3. Becomes active	73.0	116.7	94.9	111.3	89.0	94.4	
Balance 3 — 2	24.7	77.2	45.6	26.3	26.7	43.1	
4. Mobility, exits	69.6	64.7	70.8	95.1	124.6	78.6	
5. Mobility, entrees	46.9	59.3	64.5	180.1	142.4	78.6	
Balance 5-4	-22.6	-5.4	-6.3	85.1	17.8	0.0	
6. Drops out	613.6	425.0	521.9	442.8	471.8	518.1	
7. New comers	765.5	420.8	612.1	477.8	522.3	598.3	
Balance 7 — 6	151.9	-4.2	90.2	35.0	50.4	80.2	
Gains from t to $t+6$	154.0	67.6	129.6	146.3	95.0	123.3	

Mobilité socioprofessionnelle des actifs selon le sexe

Quotients de mobilité socioprofessionnelle des actifs selon le sexe

- Introduction
- 2 From structure to dynamics
- Synthetic analysis
- 4 Conclusion

Section outline

- Synthetic analysis
 - Logistic regressions
 - Multiple factorial correspondence analysis
 - Statistical implicative analysis

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1-p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p}\right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1-p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p}\right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1-p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p} \right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1 p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p} \right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1 p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p} \right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Logistic regression: A short introduction

- Aim: Measuring impact of factors on a binary variable.
- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1 p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p}\right)$
- Logistic regression model :

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

• $\exp(\beta)$ measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Synthetic analysis

- Binary variable: takes 2 states (0 or 1, yes or no).
- Example: mobile.
- p probability to be mobile among those who stay active.
- then, 1 p is probability of not being mobile.
- Odd ratio: p/(1-p)
- Logit: logarithm of the odd ratio, i.e. $\log \left(\frac{p}{1-p} \right)$
- Logistic regression model :

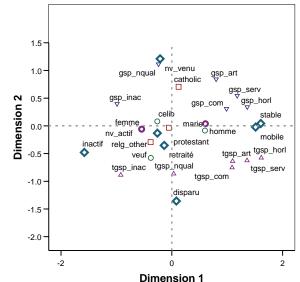
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

 \bullet exp(β) measures by how much the odd ratio is multiplied when x_1 increases by one unit.

Logistic regressions: odd ratios

	mobile	stays active	leaves activity
t_gsp_nqual	2.01***		0.65***
t_gsp_art	ref		ref
t_gsp_hor	0.73	•	0.97
t_gsp_com	0.45***		1.48**
t_gsp_serv	0.97		1.33
gsp_nqual	0.86		•
gsp_art	ref		•
gsp_hor	0.73	-	•
gsp_com	4.05***		
gsp_serv	2.14***		
protestant	1.29*	1.40**	5.04***
catholic	ref	ref	ref
woman	0.58***	1.46***	4.32***
man	ref	ref	ref
single	ref	ref	ref
married	0.99	1.08	2.96***
widowed	0.89	2.21***	1.09
Constant	0.21***	1.61***	0.01***
n	2603	2588	3830
Khi2	180.1***	35.3***	354.7***
d.l.	12	4	8

***, ** ,* statistically significant at 1%, 5% and 10%

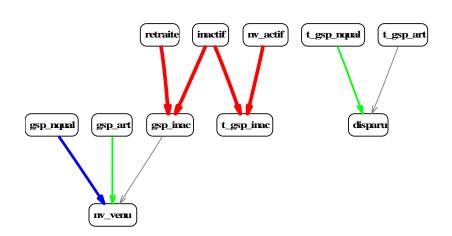


Introduction

Synthetic analysis

- Logistic regressions
- Multiple factorial correspondence analysis
- Statistical implicative analysis

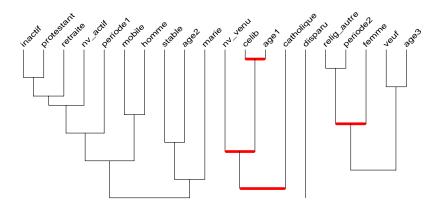
Multiple factorial correspondence analysis


Section outline

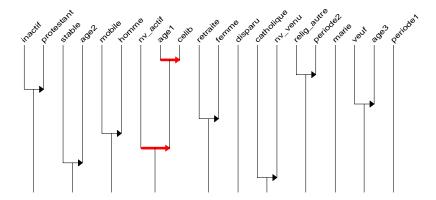
- Synthetic analysis
 - Logistic regressions
 - Multiple factorial correspondence analysis
 - Statistical implicative analysis

- Implication Rule. "widowed ⇒ woman"
 when widowed is observed, we have most often also woman.
- Implication intensity. Probability to get, in case of independence, more counter-examples than observed $p(N_{w\bar{f}} \geq n_{w\bar{f}} \mid \text{indep})$.
- Implication graph (unidirectional)
 For each pair of variables (modalities)
 - Select implication direction
 ("widowed ⇒ woman" or "woman ⇒ widowed")
 with strongest intensity.
 - Arrow for each implication with intensity above a given threshold.
 - For readability, direct implications may be hidden when there is also an indirect path between the same variables.

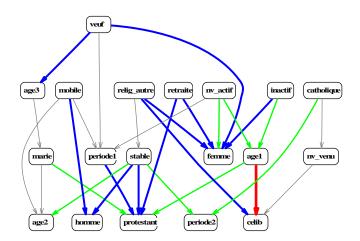
Introduction


Transitions and socioprofessional groups

Entropic measure, thresholds 99%, 81%, 63%, 58%.


Transitions and demographic characteristics 1

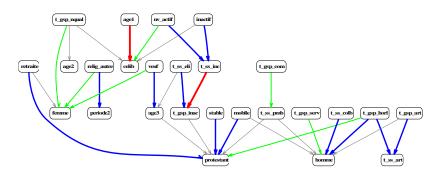
Similarity tree (symmetrical measure)



Transitions and demographic characteristics 2

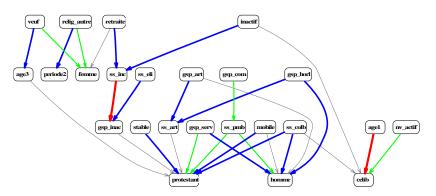
Cohesive tree (asymmetrical implication measure)

Transitions and demographic characteristics 3


Entropic measure, thresholds 99%, 75%, 65%, 55%.

	Unkwn	Unskill.	Crafts	White	P.M.B.	Elite
Path		worker	skilled	collar		
$stable \Rightarrow protestant$		Х	Х	Х	Х	
$stable \Rightarrow man$			X	X		X
$mobile \Rightarrow man$			×	X	X	×
nv_actif ⇒ protestant		×	X	X	Х	
nv_actif ⇒ single		×	X	X	Х	
$nv_actif \Rightarrow age1 \Rightarrow single$	X			X		
nv_actif ⇒ woman		×				

Socioprofessional groups and social statuses 1


Groups and statuses in t

Entropic measure, thresholds 99%, 90%, 85%, 80%.

Groups and statuses in t

Entropic measure, thresholds 99%, 90%, 85%, 80%.

- Synthetic analysis
- 4 Conclusion

Conclusion 1: Learnings

Main Findings

- Structuring variables:
 celibacy, man, woman, widowed, protestant
- Unexpected: lack of structuring role for catholic (remember that proportion of catholics rises from 11% in 1816 to more than 28% in 1843)
- Catholics grew Different but Invisible

Conclusion 2: Scope and limits of SIA

Additional insights

- Synthetic and structured view
- Clarifies and complements findings obtained with
 - detailed analyses
 - classical synthetic methods such as logistic regression and factorial techniques

Issues with SIA

- Based exclusively on bivariate relationships
 Should we (could we) consider partial implication for controlling the effect of other incoming variables on a node?
- Lack of criterion for measuring the global information provided by any representation (tree, graph)!
 Could we define some pseudo R² or some deviance measure?

Conclusion 2: Scope and limits of SIA

Additional insights

- Synthetic and structured view
- Clarifies and complements findings obtained with
 - detailed analyses
 - classical synthetic methods such as logistic regression and factorial techniques

Issues with SIA

- Based exclusively on bivariate relationships
 Should we (could we) consider partial implication
 for controlling the effect of other incoming variables on a node?
- Lack of criterion for measuring the global information provided by any representation (tree, graph)!
 Could we define some pseudo R² or some deviance measure?

THANK YOU! MERCI!

- Gras, R., S. Ag Almouloud, M. Bailleul, A. Laher, M. Polo, H. Ratsimba-Rajohn, et A. Totohasina (1996). L'implication statistique : Nouvelle méthode exploratoire de données. Recherches en didactique des mathématiques. Grenoble : La pensée sauvage.
- Oris, M. et G. Ritschard (2007). Dynamique socioprofessionnelle dans la Genève du 19e, enseignements d'une analyse de statistique implicative. In R. Gras, P. Orús, B. Pinaud, et P. Gregori (Eds.), 4èmes Rencontres Internationales Analyse Statistique Implicative (ASI4), Castellón de la Plana (España), 18-21 octubre 2007, Castellò de la Plana, Espagne, pp. 287–300. Departament de Matemàtiques, Universitat Jaume I.
- Oris, M., G. Ritschard, et G. Ryczkowska (2006). Recrutement et renouvellement des groupes socioprofessionnels à Genève, 1816-1843. In 14e Colloque de l'Association Internationale des Démographes de Langue Française AIDELF, Aveiro, 18-22 septembre 2006, Aveiro. Université d'Aveiro et AIDELF.