

Costs for multidomain sequence analysis Toy example

INDELSLOG, extended alphabet vs additive trick

True multichannel INDELSLOG costs

c.m	C.S	n.m	n.s
0.00	0.98	0.89	0.75
0.98	0.00	1.15	1.01
0.89	1.15	0.00	0.92
0.75	1.01	0.92	0.00
0.36	0.62	0.53	0.39
	0.00 0.98 0.89 0.75	0.000.980.980.000.891.150.751.01	c.mc.sn.m0.000.980.890.980.001.150.891.150.000.751.010.920.360.620.53

AT costs based on additive trick (symmetry around both diagonals)

	c.m	C.S	n.m	n.s
c.m	0.00	0.58	0.58	1.15
C.S	0.58	0.00	1.15	0.58
n.m	0.58	1.15	0.00	0.58
n.s	1.15	0.58	0.58	0.00
Indel	0.54	0.64	0.51	0.61

Costs for multidomain sequence analysis

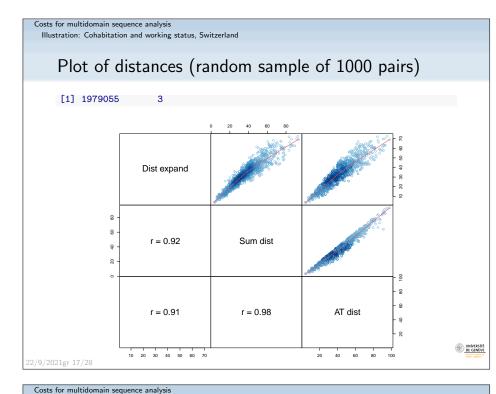

Illustration: Cohabitation and working status, Switzerland

Illustration: Cohabitation and working status, Switzerland

- Biographic data from Swiss Household Panel (SHP)
- 2 domains: Living arrangement (8 states + NA), Working status (8 states + NA)
- Expanded alphabet: 71 states (2485 sc costs, 71 indel costs)

• 1990 life sequences of length between 41 and 60 years $\left(\frac{n(n-1)}{2} = 1,979,055 \text{ dissimilarities}\right)$

22/9/2021gr 14/28


Multidomain sequence analysis (MDSA) primarily concerns the study of relationships between domains MDSA of interest for linked domains only Additive trick (AT) for setting MD costs assumes independence between domains. Therefore, not recommended. Sum of distances computed independently on each channel assumes independence of domains too. Also not recommended.

T16 T31 T46

ALO+FTI BPA+FTI UNI+HOU UNI+SPT BPA+* UNI+FTI UNI+PTI

> UNIVERSITÉ DE GENÈVE

AT dist

22/9/2021gr 18/28

main states

Costs for multidomain sequence analysis References

References I

- Gauthier, J.-A., E. D. Widmer, P. Bucher, and C. Notredame (2010). Multichannel sequence analysis applied to social science data. *Sociological Methodology* 40(1), 1–38.
- Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. *Journal of the Royal Statistical Society A 170*(1), 167–183.
- Robette, N., X. Bry, and E. Lelièvre (2015). A 'global interdependence' approach to multidimensional sequence analysis. *Sociological Methodology* 45(1), 1–44.

22/9/2021gr 23/28

Costs for multidomain sequence analysis References

INDELSLOG costs

We illustrate with INDELSLOG data-driven costs

INDELSLOG method

- Indel and substitution costs are state dependent
- indel(x_i) = log(2/(1 + f_i)) where f_i is relative frequency of state x_i in data set.
- $sc(x_i, x_j) = indel(x_i) + indel(x_j)$

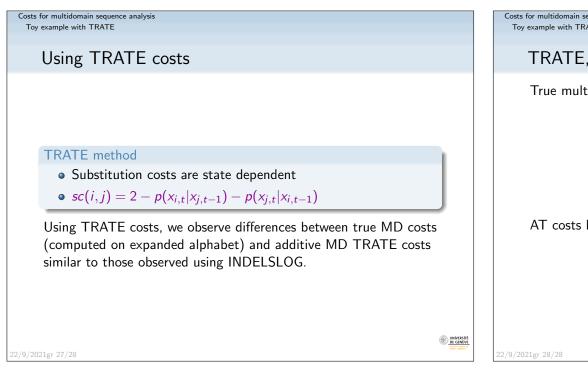
 $indel(x_i)$ decreases with frequency f_i of state x_i

Costs for multidomain sequence analysis

References

Toy example of 5 MD sequences

	21	22	23	24	25	26	27	28	
1	n	n	n	n	С	С	С	С	
2	n	n	с	с	с	с	с	С	
3	n	n	с	с	с	с	с	С	
4	n	n	n	n	n	n	n	n	n no child
5	n	n	n	n	n	с	с	С	c child
	21	22	23	24	25	26	27	28	
1	21 s	22 s	23 s	24 m	25 m	26 m	27 m	28 m	s single
1 2									s single m married
2	S	S	S	m	m	m	m	m	-
-	S S	S S	S S	m s	m s	m m	m m	m m	-


UNIVERSITÉ DE GENÈVE

> Costs for multidomain sequence analysis References

INDELSLOG costs: main differences

We observe:

- Using true MD INDELSLOG costs
 - Low cost (.75) for substituting *c.m* with *n.s*
 - High cost (1.15) for substituting *c.s* with *n.m*
 - Cost (1.01) for substituting *c.m* with *n.s* (diff. on 2 domains) is lower than for substituting *c.s* with *n.s* (diff. on 1 domain)
 - State dependent indel costs: less frequent combined states (*c.s* and *n.m*) get higher indel costs.
- Using AT, i.e. summing single channel INDELSLOG costs
 - Same cost (1.15) for substituting *c.m* with *n.s* and for substituting *c.s* with *n.m*
 - Cost for substituting *c.m* with *n.s* is approximatively twice the cost for substituting *c.s* with *n.s* (diff. on 1 domain only)
 - Similar indel costs for unfrequent and frequent combined states.

TRATE, extended alphabet vs additive trick

True multichannel TRATE costs

	c.m	C.S	n.m	n.s
c.m	0.00	1.67	1.67	1.93
C.S	1.67	0.00	2.00	1.93
n.m	1.67	2.00	0.00	1.79
n.s	1.93	1.93	1.79	0.00
Indel	1.00	1.00	1.00	1.00

AT costs based on additive trick (observe double symmetry)

	c.m	C.S	n.m	n.s
c.m	0.00	1.71	1.80	3.51
c.s	1.71	0.00	3.51	1.80
n.m	1.80	3.51	0.00	1.71
n.s	3.51	1.80	1.71	0.00
Indel	1.75	1.75	1.75	1.75