

Introduction Trees induced from data

Supervised and unsupervised trees

- Supervised tree: There is a (univariate or multivariate) target variable and branching is defined in terms of the values of covariates.
- Diversity is measured in the space of this target variable.
- Examples: Classification tree, regression tree, survival tree, ...
- Unsupervised tree: There is no specific target variable and no branching condition in terms of values of variables.
- Diversity is measured in the space of all considered variables.
- Example: Dendrogram representing hierarchical clustering.

Mobility Tree

Introduction Trees induced from data

Trees for sequence data

- We shall focus on supervised trees and their use for sequence data.
- How is present state related to previous states? (Mobility analysis)
- How discriminating are specific sequencing patterns, for sex, cohort, ...?
- How are typical sequencing patterns linked to covariates of interest?
- However, Will also shortly discuss typology of sequences (Hierarchical clustering)

8/5/2008gr 8/75

Mobility Tree Examples to start with

Social mobility over 3 generations

Social mobility over 3 generations

- Using data from acts of marriage of 19th century Geneva Ryczkowska (2003)
- On each act:
 - profession of the groom
 - profession of the father (at son's marriage)
- By matching records of the groom with that of his father
 - profession of the father (at father's marriage)
 - profession of the grand-father (at father's marriage)
- 572 matched records (i.e. grooms whose father married also in Geneva)

Mobility Tree

Examples to start with Social mobility over 3 generations

The social statuses

6 statuses derived from the professions

- unskilled: unskilled daily workmen, servants, labourer, ...
- craftsmen: skilled workmen
- clock makers: skilled persons working for the "Fabrique"
- white collars: teachers, clerks, secretaries, apprentices, ...
- petite et moyenne bourgeoisie: artists, coffee-house keepers, writers, students, merchants, dealers, ...
- élites: stockholders, landlords, householders, businessmen, bankers, army high-ranking officers, ...
- + unknown

Examples to start with Social mobility over 3 generations

Social statuses in 3 categories

For further simplification we consider also Statuses into 3 categories

3 class statuses	6 class statuses
Low	unknown unskilled craftsmen
Clock	clock makers
High	white collars PMB elites

3/5/2008gr 14/75

Mobility Tree

Examples to start with Three generations social transitions

Three generations social transitions

- Classical approach: Markov model up to order 3:
 - Status at t depends on statuses at t 1, t 2 and t 3:

$p(s_t | s_{t-1}, s_{t-2}, s_{t-3})$

holds for any status s_t .

- For 3 statuses, there are $3^3 = 27$ different conditions.
- Many free parameters (54) \Rightarrow modeling probabilities in term of fewer parameters (Berchtold and Raftery, 2002)
- Can be done with Berchtold and Berchtold (2004)'s March software.
- Mobility tree: Flexible Markov model
- Each s_t depends only on significant previous statuses.
- Classification tree for which the present status s_t is the target, and previous statuses $s_{t-1}, s_{t-2}, s_{t-3}$ are predictors.
- Easy to account for other covariates.

8/5/2008gr 17/75

Mobility Tree

Examples to start with

Social mobility over 3 generations

Father-Son Social Transition, Enrooted

Father to son social transition rates, Geneva 1830-1880, enrooted population (572 cases)

	Son							
Father	unkwn	unskil	craft	clock	wcolar	PMB	élite	Total
unknown			22.2	33.3	22.2	22.2		100
unskilled		27.3	9.1	36.4		27.3		100
craftsman		1.2	39.5	29.6	11.1	14.8	3.7	100
clock maker		7.2	4.8	63.9	8.4	13.3	2.4	100
white collar			27.8	22.2	16.7	27.8	5.6	100
PMB		7.4	10.3	20.6	2.9	47.1	11.8	100
élite	2.2	2.2	8.9	8.9	4.4	31.1	42.2	100
deceased		6.6	12.8	35.0	17.5	18.3	9.7	100
Total	0.2	5.8	15.4	34.3	12.2	22.0	10.1	100

Mobility	Tree	

3/5/2008gr 15/75

Examples to start with

Three generations social transitions

Covariate: Geographical Origin

Code	Place
GEcity	Geneva city
GEland	Geneva surrounding land
neighbF	neighboring France
VD	Vaud
NE	Neuchatel
otherFrCH	other French speaking Switzerland
GermanCH	German speaking Switzerland
ТІ	Italian speaking Switzerland
F	France
D	Germany
1	Italy
other	other

8/5/2008gr 18/7

Three generations social transitions

Mobility tree for the 3 generations problem

Son's Status: Low (workers and craftsmen), Clock Maker, High

Mobility Tree Examples to start with

Working statuses mobility

Mobility over working statuses

- (SHP Data, Waves 1 to 6 (1999-2004), aged between 20 and 64 in 2004.)
- How does working status (occupied active, unemployed, inactive) in 2004 depend on
 - working status in previous year (1999 to 2003)
 - other factors (attained education level, partner working status, partner education level, ...)

and what are main interaction effects?

- Mobility trees are alternative to Markovian transition models.
- Growing separate classification trees for women and men highlights gender differences.

Mobility Tree

Examples to start with Three generations social transitions

Tree quality

- Error rate: 42.4%, i.e. 24% reduction of the classification error rate of the initial node
- Goodness of fit

Tree	G2	df	sig	BIC	AIC	pseudo R^2
Indep	482.3	324	0.000	2319.6	812.3	0
Level 1	408.2	318	0.000	1493.9	750.2	0.14
Level 2	356.0	310	0.037	1492.5	714.0	0.23
Level 3	327.6	304	0.168	1502.2	697.6	0.28
Fitted	312.5	300	0.298	1512.5	690.5	0.30
Saturate	d 0	0	1	3104.7	978.0	1

Working status B (full time, long part time, short part time, unemployed, inactive)

8/5/2008gr 23/7


```
Mobility Tree
```

Induction Trees Supervised learning

Supervised learning

- Based on a learning sample $\{(\mathbf{x}_{\alpha}, y_{\alpha})\}_{\alpha=1,\dots,n}$
 - where y_{α} is the value (class) of the response (dependent, ...) variable for case α .
 - and $\mathbf{x}_{\alpha} = (x_{\alpha 1}, \dots, x_{\alpha p})$ is the profile of α in terms of the covariates.
- Build a predictive function (or classification function)

 $y = f(\mathbf{x})$

with which we can predict the value or class y when only the profile x is known.

• Example: predict whether a passenger of the Titanic survives from the sole knowledge of sex, age (child/adult) and navigation class.

Mobility Tree Induction Trees Tree Growing Principle

Constructing the rules

An induction tree (like a logistic regression) determines the rule f(x) in two steps

Obtermine a partition of the possible profiles x such that the distribution p_V of the response Y is as different as possible from one class to the other. т

² The rule consists then in assigning to each case the most frequently observed value y in the class defined by the values of x.

$$\hat{y} = f(\mathbf{x}) = \arg \max_{i} \hat{p}_i(\mathbf{x})$$

Mobility Tree Induction Trees Tree Growing Principle

Target Table

- Assuming all variables are categorical, we can represent the data with a contingency table that cross tabulates the response variable with a composite variable defined by the cross tabulation of all covariates.
- Example of a target contingency table **T**.
- Response variable is marital status, predictors are sex and sector of activity

married	man primary secondary tertiary			n woman dary tertiary primary secondary tertiary			total
no	11	14	15	0	5	5	50
yes	8	8	9	10	7	8	50
total	19	22	24	10	12	13	100

- Starting with the root node (formed by the set of all cases), we seek the covariate that permits the better split according to a given criterion (greatest entropy reduction, strongest association with the response.)
- Operation is repeated at each new obtained node until fulfilment of some stopping criterion (a minimal node size or a minimal gain in the criterion).

Mobility Tree

```
Mobility Tree
Induction Trees
The criteria
```

Splitting criteria

Criteria from

• Information Theory: Entropies (uncertainty) prediction made from the resulting distribution

```
Shannon's entropy:h_S(p) = -\sum_{i=1}^{c} p_i \log_2 p_iQuadratic entropy (Gini):h_Q(p) = \sum_{i=1}^{c} p_i(1-p_i) = 1 - \sum_{i=1}^{c} p_i^2
```

- \Rightarrow maximizing entropy reduction (maximizing within leaves homogeneity)
- Statistical associations: Pearson's Chi-square, measures of association.
 - \Rightarrow maximizing association,
 - minimizing the *p*-value of the no-association test.
 - (maximizing diversity between leaves)

8/5/2008gr 37/75

Mobility Tree Induction Trees

The criteria

Gain of information (2)

- Gain = reduction of uncertainty
- Uncertainty: Shannon's entropy

$$H(\text{marital status}) = -\sum_{i=1}^{c} p_i \log_2 p_i$$

= $-\left(\frac{50}{100} \log_2\left(\frac{50}{100}\right) + \frac{50}{100} \log_2\left(\frac{50}{100}\right)\right) = 1$
 $H(\text{marital status}|\text{man}) = -\left(\frac{40}{65} \log_2\left(\frac{40}{65}\right) + \frac{25}{65} \log_2\left(\frac{25}{65}\right)\right) = .961$
 $H(\text{marital status}|\text{woman}) = -\left(\frac{10}{35} \log_2\left(\frac{10}{35}\right) + \frac{25}{35} \log_2\left(\frac{25}{35}\right)\right) = .863$
 $H(\text{marital status}|\text{sex}) = (65/100)0.961 + (35/100)0.863 = 0.927$
 $Gain(\text{sex}) = H(\text{marital status}) - H(\text{marital status}|\text{sex})$
 $= 1 - 0.927 = 0.073$

Mobility Tree Induction Trees The criteria

8/5/2008gr 40/75

Gain of information (1)

- Splitting the root node by sex, we get two nodes.
- The distribution in each node is that of the corresponding column of Table below

Marital status by sex					
age	man	woman	total		
married	40	10	50		
not married	25	25	50		
total	65	35	100		

• What information brings "sex"?

8/5/2008gr 38/75
Mobility Tree
Induction Trees
Most popular tree growing methods
 CHAID, CHi-square based Automatic Interaction Detection (Kass, 1980; Biggs et al., 1991): n-ary trees, criterion based on Bonferroni adjusted <i>p</i>-values of independence tests. CHAID is an extension of an earlier regression tree method called AID (Morgan and Sonquist, 1963)
 CART, Classification and Regression Tree (Breiman et al., 1984): binary trees, criterion is maximizing decrease of Gini purity measure, pruning, surrogate splits in case of missing values.
 C4.5 (Quinlan, 1993): binary trees, criterion is Information Gain, the reduction in Shannon's entropy standardized by the entropy of the predictor.
• C4.5 was designed in a less statistical and more IA perspective.

Mobility Tree Induction Trees

The criteria

Most popular tree growing methods (2)

- CART and C4.5 were designed for prediction purposes (prediction error is a primary concern).
- CHAID and AID primary aim is interaction detection. Their aim is primary description, rather than prediction.

8/5/2008gr 41/75

Mobility Tree Initiation to the practice of decision trees with party Party

party principle

- party selects each split in two steps (to avoid bias in favor of predictors with many different values):
 - First, selects the predictor with strongest association with target,
 - Then, selects the best binary split for selected predictor.

Mobility Tree

Initiation to the practice of decision trees with party Party

Party

- There at least two packages in R for growing (binary) trees:
 - rpart (Therneau and Atkinson, 1997): recursive partitioning CART, Relative risk trees,
 - party (Hothorn et al., 2006): conditional partitioning Based on a statistical conditional inference method (permutation tests)
- We discuss here only the second one
 - much more powerful and flexible.
 - better visual rendering (Plots distributions inside the nodes)

Mobility Tree

3/5/2008gr 44/75

Initiation to the practice of decision trees with party Party

Linear statistic and permutation test

- Both steps are based on the conditional distribution of linear statistics in a permutation test framework.
 - Linear statistic is:

$$\mathbf{T}_{j} = \operatorname{vec}\Big(\sum_{i=1}^{n} w_{i}g_{j}(X_{ji})h(\mathbf{Y}_{i},(\mathbf{Y}_{1},\ldots,\mathbf{Y}_{n}))^{T}\Big) \in \mathbb{R}^{p_{j}q}$$

where $g_j(X_{ji})$ is a transformation of X_{ji} , and h() an influence function.

- **T**_j is computed for each permutation of the **Y** values among cases, and results characterize its conditional independence distribution.
- the variable and split selection is then based on the *p*-value of the observed t under this conditional independence distribution.

8/5/2008gr 49/75

8/5/2008gr 50/7

Initiation to the practice of decision trees with party Now building a mobility tree

Mobility tree on the 3 generations mobility data

Mobility tree example with data from marriage acts of 19th Century Geneva

library(foreign) # library for importing data from various sources sm_data <- read.spss(file="C:/data/lund/mobility/par_enf_tree_267.sav",to.data.frame=T) sm_data\$NC1_ST3 <- factor(sm_data\$NC1_ST3) # to remove deceased category</pre>

ordering and renaming state variables seqs <- data.frame(GdFather=sm_data\$NG1ST_P3, Father_his_M = sm_data\$NP1_ST3, Father_son_M = sm_data\$NC1ST_P3, Son_M=sm_data\$NC1_ST3)

Growing mob tree with ctree (party package)

library(party)

cl_tree <- ctree(seqs\$Son_M ~ seqs\$Father_son_M + seqs\$Father_his_M + seqs\$GdFather + sm_data\$C1LIEU11) plot(cl_tree)

you may control the tree with ctree_control()

control <- ctree_control(testtype="Univariate",mincriterion=.9,minsplit=20,minbucket=10)
cl_tree <- ctree(seqs\$Son_M ~ seqs\$Father_son_M + seqs\$Father_his_M + seqs\$GdFather +
 sm_data\$C1LIEU11,controls=control)
plot(cl_tree,drop_terminal=F)</pre>

3/5/2008gr 52/75

Mobility Tree

Initiation to the practice of decision trees with party Now building a mobility tree

Text output

Conditional inference tree with 8 terminal nodes Response: seqs\$Son_M Inputs: seqs\$Father_son_M, seqs\$Father_his_M, seqs\$GdFather, sm_data\$C1LIEU11 Number of observations: 267 1) seqs\$Father_his_M == {high}; criterion = 1, statistic = 48.744 2) seqs\$Father_son_M == {clock, deceased}; criterion = 0.948, statistic = 12.494 3)* weights = 38 2) seqs\$Father_son_M == {low, high} 4) seqs\$GdFather == {low, clock}; criterion = 0.918, statistic = 6.709 5)* weights = 16 4) seqs\$GdFather == {high, deceased} 6)* weights = 29 1) seqs\$Father_his_M == {low, clock} 7) seqs\$Father_son_M == {clock, high, deceased}; criterion = 0.998, statistic = 20.864 8) seqs\$Father_his_M == {low}; criterion = 0.897, statistic = 13.387 9) seqs\$GdFather == {clock, high}; criterion = 0.992, statistic = 17.472 10)* weights = 16 9) seqs\$GdFather == {low, deceased} 11) seqs\$GdFather == {low}; criterion = 0.808, statistic = 8.461 12)* weights = 24 11) seqs\$GdFather == {deceased} 13)* weights = 25 8) seqs\$Father_his_M == {clock}

o/ seqs%ratner_nis_M == {clock} 14)* weights = 76 7) seqs%Father_son_M == {low} 15)* voights = 42

```
15)* weights = 43
```

/5/2008gr 54/75

Mobility Tree

Initiation to the practice of decision trees with party Now building a mobility tree

State variables

• Variables are

variable	label
GdFather	'Status Grd-father, 3 categories'
Father_his_M	'Status Father (his marr.), 3 categories'
$Father_son_M$	'Status Father (son"s marr.), 3 categories'
Son_M	'Status Son (his marr.), 3 categories'

8/5/2008gr 53/

Mobility Tree Initiation to the practice of decision trees with party Now building a mobility tree

And here is the induced tree

Mobility Tree Initiation to the practice of decision trees with party Now building a mobility tree Transition rates

• You may get transition rates with TraMineR

> library(TraMineR) > seqtrate(seqs) Computing transition rates between states clock deceased high low, please wait [-> clock] [-> deceased] [-> high] [-> low] 0.1562500 0.2625000 0.0750000 [clock ->] 0.5062500 [deceased ->] 0.3333333 0.0000000 0.3607306 0.3059361 [high ->] 0.1641791 0.1492537 0.5621891 0.1243781 [low ->] 0.1357466 0.2352941 0.1764706 0.4524887 >

8/5/2008gr 56/75

Mobility Tree Quality of the tree Error rates and deviance

Other issues with trees

- Structure instability. The structure of the tree (selected predictors and splits) may vary when data is slightly perturbed.
 - Could be tested with resampling methods (Dannegger, 2000).

• Multi-level analysis

- How can we account for multi-level effects in classification trees?
- Conjecture: Should be possible to include unobserved shared effect in deviance-based splitting criteria.
- This remains all to be done

Mobility Tree Quality of the tree

Error rates and deviance

Quality of the tree

- When the concern is classification, i.e. predicting the value of the response variable, we look typically at the error rate.
 - Error rate should be computed on a test sample (different from learning sample).
 - Cross-validation is often used.
- For non classification purposes (as is most often the case in social sciences)
 - We can compute some deviance (Ritschard, 2006) that measures how far the obtained partition is from the finest one that can be defined with the predictors.
 - Deviance reduction between nested models can be compared with Chi-square distributions (example).
- 8/5/2008gr 59/75

Mobility Tree Quality of the tree Complexity

Complexity

- Tree complexity:
 - number of nodes
 - number of levels
 - message length (rules)
- We may reduce complexity
 - a priori by reinforcing stopping rules
 - (e.g. maximal number of levels or minimal node size)
 - a posteriori through pruning (mainly used with non statistical splitting criteria, such as in CART)
- In statistics, complexity of model = number of free parameters
 - Can also be applied to trees.

8/5/2008gr 62/7

Mobility Tree Quality of the tree

Quality of partitions

Quality of partitions

- Global improvement of criterion
 - Gain of information between root node and set of all leaves (terminal nodes).
 - Degree of association between target and final partition (GK τ , Cramer's v, ...).
 - *p*-value of independence test between target and partition (node numbers).
- With party, you may use the where(growntree) command to retrieve the node membership for each case.

Mobility Tree

Discriminating with typical sequencing pattern

Discriminating with typical sequencing pattern

- Approach used by (Billari et al., 2006) on FFS data for Italy and Austria.
- Here we consider (SHP 2002 biographical data)
- Selection of pairs of events, e.g. marriage and first job.
- For each pair, order of sequence: <, =, >, missing
- Which are the most typical sequences?
- Most discriminating sequences between
 - sex
 - birth cohort (1940 and before, after 1940)

8/5/2008gr 64/75

Mobility Tree

3/5/2008gr 66/75

Discriminating with typical sequencing pattern

Discriminating sex with 2-event sequences

Unsupervised trees: Dendrograms

Unsupervised trees

• Compute a distance or proximity matrix between sequences (OM or other metrics).

- Can be done with CHESA (Elzinga, 2007) or with TraMineR in R.
- Once you have the distance matrix you can make a hierarchical clustering and produce the dendrogram.

8/5/2008gr 70/75

Mobility Tree Unsupervised trees: Dendrograms

Resulting dendrogram

Dendrogram of agnes(x = dist.om1, diss = TRUE, method = "wa

Mobility Tree

Unsupervised trees: Dendrograms

R script: hierarchical clustering

library(TraMineR)
reading mvad data from a csv file
mvad <- read.csv(file="c:/data/lund/McVicar.csv",header=TRUE)</pre>

svar <- 15:86 # sets the sequence to be considered

Computing OM distances # First we compute the substitution costs based on transition rates submat <- seqsubm(mvad,svar,method= "TRATE") # and now the OM distances dist.om1 <- seqdist(mvad, svar, format="STS", method="OM", indel=1, submat)</pre>

Hierarchical Clustering with Ward Method library(cluster) clusterward1 <- agnes(dist.om1, diss=TRUE, method="ward") plot(clusterward1)

8/5/2008gr 71/7

Mobility Tree Unsupervised trees: Dendrograms

Bibliographie I

Berchtold, A. and A. Berchtold (2004). MARCH 2.02: Markovian model computation and analysis. User's guide, www.andreberchtold.com/march.html.
Berchtold, A. and A. E. Raftery (2002). The mixture transition distribution model for high-order Markov chains and non-gaussian time series. *Statistical Science* 17(3), 328–356.

Biggs, D., B. De Ville, and E. Suen (1991). A method of choosing multiway partitions for classification and decision trees. *Journal of Applied Statistics* 18(1), 49–62.

Billari, F. C., J. Fürnkranz, and A. Prskawetz (2006). Timing, sequencing, and quantum of life course events: A machine learning approach. *European Journal of Population* 22(1), 37–65.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). *Classification And Regression Trees.* New York: Chapman and Hall.

Dannegger, F. (2000). Tree stability diagnostics and some remedies for instability. Statistics In Medicine 19(4), 475–491.

8/5/2008gr 73/7

Unsupervised trees: Dendrograms

Bibliographie II

- Elzinga, C. H. (2007). CHESA 2.1 User manual. User guide, Dept of Social Science Research methods, Vrije Universiteit, Amsterdam.
- Hothorn, T., K. Hornik, and A. Zeileis (2006). party: A laboratory for recursive part(y)itioning. User's manual.
- Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. *Applied Statistics* 29(2), 119–127.
- Morgan, J. N. and J. A. Sonquist (1963). Problems in the analysis of survey data, and a proposal. *Journal of the American Statistical Association 58*, 415–434.
- Quinlan, J. R. (1993). *C4.5: Programs for Machine Learning*. San Mateo: Morgan Kaufmann.

Ritschard, G. (2006). Computing and using the deviance with classification trees. In A. Rizzi and M. Vichi (Eds.), *COMPSTAT 2006 - Proceedings in Computational Statistics*, pp. 55–66. Berlin: Springer.

Ryczkowska, G. (2003). Accès au mariage et structure de l'alliance à Genève, 1800-1880. Mémoire de dea, Déartement d'histoire économique, Université de Genève, Genève.

8/5/2008gr 74/75

Mobility Tree

Unsupervised trees: Dendrograms

Bibliographie III

Therneau, T. M. and E. J. Atkinson (1997). An introduction to recursive partitioning using the rpart routines. Technical Report Series 61, Mayo Clinic, Section of Statistics, Rochester, Minnesota.

8/5/2008gr 75/75