## Objectives

## Exploring the sequencing and timing of life events

Gilbert Ritschard
Reto Bürgin and Matthias Studer

NCCR LIVES et Institute for demographic and life course studies
University of Geneva
http://mephisto.unige.ch
Lausanne Conference on Sequential Analysis University of Lausanne, June 6-8, 2012

- (Non tree) data-mining-based methods
- Discovering interesting information from sequences of life events, i.e. on how people sequence important life events
- What is the most typical succession of family or professional life events?
- Are there standard ways of sequencing those events?
- What are the most typical events that occur after a given subsequence such as after leaving home and ending education?
- How is the sequencing of events related to covariates?
- Which event sequencings do best discriminate groups such as men and women?
- Mining of frequent (Agrawal and Srikant, 1995; Mannila et al., 1995; Bettini et al., 1996; Mannila et al., 1997; Zaki, 2001) and discriminant event subsequences

```
SHP Life Event Histories
    Oboduction
        Objectives (continued)
```

- Demonstrate the kind of results that can be obtained by mining event subsequences
- Search for
- most frequent subsequences
- subsequences that best discriminate groups (provided covariate)
- But also, computing dissimilarities between event sequences
- which permits then
- clustering event sequences
- principal coordinate analysis (multi-dimensional scaling)
- find out medoids or density-based representative sequences
- discrepancy analysis and regression trees ...


## SHP Life Event Histories <br> Objectiv

## What's new

- Previous attempts with event sequences in social sciences (e.g. Billari et al., 2006; Ritschard et al., 2007) mainly consisted in counting predefined subsequences.


Switzerland, SHP 2002 biographical survey $(n=5560)$
$\qquad$

## SHP Life Event Historie

Introduction
Event sequences versus state sequences

- State sequence: states last a whole interval period

| age | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| state | $2 P$ | $2 P$ | $A$ | $A$ | UC | UC | UC |

- Event sequence: events occur at a given (time) position
- Interest in their order, in their sequencing
- Can be time stamped (TSE)

| id | Timestamp | Event |
| :--- | :---: | :--- |
| 101 | 22 | Leaving Home |
| 101 | 24 | Start leaving with partner |
| 101 | 24 | Childbirth |



## SHP Life Event Historie

ntroductio
The Biographical Data from the Swiss Household Panel

## The Biographical SHP Data

- Sequences derived from the biographical survey conducted in 2002 by the Swiss Household Panel www. swisspanel.ch
- Retain the 1503 cases studied in Widmer and Ritschard (2009) with techniques for state sequences
- Only individuals aged 45 or more at survey time
- Focus on life trajectory between 20 and 45 years
- Granularity is yearly level



## Short and long state labels

| Cohabitational | Occupational |  |  |
| :--- | :--- | :--- | :--- |
| 2 P | Biological father and mother | Mi | Missing |
| 1 P | One biological parent | FT | Full time |
| PP | One biological parent with her/his partner | PT | Part time |
| A | Alone | NB | Neg. break |
| U | With partner | PB | Pos. break |
| UC | Partner and biological child | AH | At home |
| UN | Partner and non biological child | RE | Retired |
| C | Biological child and no partner | ED | Education |
| F | Friends |  |  |
| O | Other |  |  |

```
SHP Life Event Historie
Introduction
```

The Biographical Data from the Swiss Household Panel
Creating the event sequences

- We create the cohabitational event sequence object as follows using the previous matrix (denoted transition.coh.mat)
$R>$ shpevt.coh <- seqecreate(seqs.coh, tevent=transition.coh.mat)
- For occupational trajectories, we define an event for the start of each spell in a different state
R> shpevt.occ <- seqecreate(seqs.occ, tevent="state") after having merged the 'At home' aн and 'Retired' R states.


## SHP Life Event Histories

Introduction
The Biographical Data from the Swiss Household Panel
Events associated to cohabitational state transitions

- For cohabitational trajectories, we convert states to events by defining the events associated to the state transitions

|  | 2P | 1P | PP | A | U | UC | UN | C | F | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2P | "2P" | "1P" | "PP" | "LH, A" | "LH, U" | "LH,U,C" | "LH, U, C" | "LH, C" | "LH, A" | "LH,0" |
| 1 P | "2P" | "1P" | "PP" | "LH, A" | "LH, U" | "LH,U,C" | "LH, U, C" | "LH, C" | "LH, A" | "LH,0" |
| PP | "2P" | "1P" | "PP" | "LH,A" | "LH,U" | "LH,U,C" | "LH,U,C" | "LH, C" | "LH,A" | "LH,0" |
| A | "2P" | "1P" | "PP" | "A" | "U" | "U,C" | "U, C" | "C" | "" | "0" |
| U | "2P" | "1P" | "PP" | "UE,A" | "U" | "C" | "C" | "C" | "UE, A" | "UE,0" |
| UC | "2P" | "1P" | "PP" | "UE,CL,A" | "CL" | "U, C" | "CL, C" | "UE" | "UE, CL, A" | "UE, CL, 0 " |
| UN | "2P" | "1P" | "PP" | "UE, CL, A" | "CL" | "C" | "U,C" | "UE,C" | "UE, CL, A" | "UE, CL, O" |
| C | "2P" | "1P" | "PP" | "CL, A" | "CL, U" | "U" | "CL, C" | "C" | "CL, A" | "CL, O" |
| F | "2P" | "1P" | "PP" | "" | "U" | "U,C" | "U,C" | "C" | "A" | "0" |
| 0 | "2P" | "1P" | "PP" | "A" | "U" | "U,C" | "U,C" | "C" | "A" | "0" |



## SHP Life Event Historie

troduction
The Biographical Data from the Swiss Household Panel
Rendering occupational event sequences
(Bürgin et al., 2012)


LIVES

## SHP Life Event Histories

Introduction
Frequent
Frequent subsequences versus Frequent itemsets - 1

- Mining of frequent itemsets and association rules has been popularized in the 90 's with the work of Agrawal and Srikant (1994); Agrawal et al. (1995) and their Apriori algorithm.
- Find out items that customers often buy together
- Symptoms that often occur together before a failure

```
SHP Life Event Histories
    Frequent subsequences in TraMineR
        Terminolgy
```


## Events and transitions

- Event sequence: ordered list of transitions.
- Transition: a set of non ordered events.

$$
\begin{aligned}
& \text { Example } \\
& (\text { LHome, Union }) \rightarrow(\text { Marriage }) \rightarrow(\text { Childbirth })
\end{aligned}
$$

- (LHome, Union) and (Marriage) are transitions.
- "LHome", "Union" et "Marriage" are events.

Algorithm in TraMineR is adaptation of the tree search described in Masseglia (2002).

## Life Event Historie

Frequent subsequences in TraMineR
Terminolgy

## Subsequence

- A subsequence $B$ of a sequence $A$ is an event sequence such that
- each event of $B$ is an event of $A$,
- events of $B$ are in same order as in $A$.


## Example

$A$ (LHome, Union) $\rightarrow$ (Marriage) $\rightarrow$ (Childbirth).
$B$ (LHome, Marriage) $\rightarrow$ (Childbirth).
$C$ (LHome) $\rightarrow$ (Childbirth).

- $C$ is a subsequence of $A$ and $B$, since order of events is respected.
- $B$ is not a subsequence of $A$, since we don't know in $B$ whether "LHome" occurs before "Marriage".


## SHP Life Event Histories Frequent subsequences in TraMineR <br> Terminolgy <br> Episode structure constraints <br> Joshi et al. (2001) <br> For people who leave home within 2 years from their 17, what are typical events occurring until they get married and have a first child? <br> 

node constraint

8/6/2012gr 25/59

| SHP Life Event HistoriesFrequent Swiss life course subsequences |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Frequent cohabitational subsequences 10 most frequent subsequences, min support $=50$ |  |  |  |  |  |
| - With at least 2 events <br> Remember that we assigned the state at age 20 as start event |  |  |  |  |  |
| Subsequence |  | Support | Count | \#Transitions | \#Events |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $(2 \mathrm{P}) \rightarrow$ (LH) | 0.621 | 934 | 2 | 2 |
|  | $(2 \mathrm{P}) \rightarrow(\mathrm{U})$ | 0.582 | 874 | 2 | 2 |
|  | $(2 \mathrm{P}) \rightarrow(\mathrm{C})$ | 0.477 | 717 | 2 | 2 |
|  | (LH, U) | 0.454 | 682 | 1 | 2 |
| 5 | $(\mathrm{U}) \rightarrow(\mathrm{C})$ | 0.429 | 645 | 2 | 2 |
| 6 | $(2 \mathrm{P}) \rightarrow(\mathrm{LH}, \mathrm{U})$ | 0.392 | 589 | 2 | 3 |
| 7 | $(\mathrm{LH}) \rightarrow(\mathrm{C})$ | 0.382 | 574 | 2 | 2 |
| 8 | $(\mathrm{A}) \rightarrow(\mathrm{U})$ | 0.376 | 565 | 2 | 2 |
| 9 | $(2 \mathrm{P}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{C})$ | 0.325 | 489 | 3 | 3 |
| 10 | $(\mathrm{C}, \mathrm{U})$ | 0.291 | 437 | 1 | 2 |
|  |  |  |  |  | LIVEs ${ }^{\text {ciom }}$ |


| SHP Life Event HistoriesFrequent Swiss life course subsequences |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Frequent occupational subsequences <br> Most frequent subsequences, $\min$ support $=50$ |  |  |  |  |  |
| - With at least 2 events <br> Remember that we assigned the state at age 20 as start event |  |  |  |  |  |
| Subsequence |  | Support | Count | \#Transitions | \#Events |
| 1 | $(\mathrm{ED}) \rightarrow$ (FT) | 0.283 | 425 | 2 | 2 |
| 2 | $(\mathrm{FT}) \rightarrow(\mathrm{AH})$ | 0.265 | 398 | 2 | 2 |
| 3 | $(\mathrm{FT}) \rightarrow(\mathrm{PT})$ | 0.219 | 329 | 2 | 2 |
| 4 | $(\mathrm{AH}) \rightarrow(\mathrm{PT})$ | 0.130 | 195 | 2 | 2 |
| 5 | $(\mathrm{ED}) \rightarrow(\mathrm{AH})$ | 0.113 | 170 | 2 | 2 |
| 6 | $(\mathrm{ED}) \rightarrow(\mathrm{PT})$ | 0.112 | 168 | 2 | 2 |
| 7 | $(\mathrm{FT}) \rightarrow(\mathrm{FT})$ | 0.112 | 168 | 2 | 2 |
| 8 | $(\mathrm{FT}) \rightarrow(\mathrm{AH}) \rightarrow(\mathrm{PT})$ | 0.105 | 158 | 3 | 3 |
| 9 | $(\mathrm{FT}) \rightarrow(\mathrm{ED})$ | 0.073 | 109 | 2 | 2 |
| 10 | $(\mathrm{ED}) \rightarrow(\mathrm{FT}) \rightarrow(\mathrm{PT})$ | 0.071 | 107 | 3 | 3 |
| 8/6/2012gr 30/59 |  |  |  |  |  |

SHP Life Event Histories
Frequent Swiss life course subsequences
Frequent occupational subsequences - 2
Frequent occupational subsequen
Most frequent subsequences, min support $=50$

- With at least 2 events and 3-year maximum time span Remember that we assigned the state at age 20 as start event

|  | Subsequence | Support | Count | \#Transitions | \#Events |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | $(\mathrm{ED}) \rightarrow(\mathrm{FT})$ | 0.185 | 288 | 2 | 2 |
| 2 | $(\mathrm{FT}) \rightarrow(\mathrm{AH})$ | 0.067 | 100 | 2 | 2 |
| 3 | $(\mathrm{ED}) \rightarrow(\mathrm{AH})$ | 0.042 | 73 | 2 | 2 |
| 4 | $(\mathrm{PT}) \rightarrow(\mathrm{FT})$ | 0.036 | 56 | 2 | 2 |
| 5 | $(\mathrm{PT}) \rightarrow(\mathrm{AH})$ | 0.034 | 53 | 2 | 2 |
| 6 | $(\mathrm{ED}) \rightarrow(\mathrm{PT})$ | 0.031 | 52 | 2 | 2 |

$\rightarrow 2$

## SHP Life Event Historie

Frequent Swiss life course subsequences
Frequent cohabitational subsequences - 2
10 most frequent subsequences, min support 50

- With at least 2 events and 3-year maximum time span Remember that we assigned the state at age 20 as start event

|  | Subsequence | Support | Count | \#Transitions | \#Events |
| ---: | :--- | :---: | :---: | :---: | :---: |
| 1 | $($ LH,U $)$ | 0.454 | 682 | 1 | 2 |
| 2 | $(\mathrm{C}, \mathrm{U})$ | 0.291 | 437 | 1 | 2 |
| 3 | $(2 \mathrm{P}) \rightarrow(\mathrm{LH})$ | 0.275 | 414 | 2 | 2 |
| 4 | $(\mathrm{U}) \rightarrow(\mathrm{C})$ | 0.274 | 412 | 2 | 2 |
| 5 | $(\mathrm{~A}, \mathrm{LH})$ | 0.244 | 367 | 1 | 2 |
| 6 | $(\mathrm{C}, \mathrm{LH})$ | 0.180 | 270 | 1 | 2 |
| 7 | $(\mathrm{C}, \mathrm{LH}, \mathrm{U})$ | 0.175 | 263 | 1 | 3 |
| 8 | $(\mathrm{LH}) \rightarrow(\mathrm{C})$ | 0.166 | 250 | 2 | 2 |
| 9 | $(\mathrm{~A}) \rightarrow(\mathrm{U})$ | 0.158 | 237 | 2 | 2 |
| 10 | $(2 \mathrm{P}) \rightarrow(\mathrm{A})$ | 0.148 | 223 | 2 | 2 |
|  |  |  |  |  | LIVES |

Frequent subsequences easily extends to multichannel

- Here we have cohabitational and occupational trajectories
- Merging the two series of time stamped events
- we get mixed cohabitational/occupational event sequences

| SHP Life Event Histories |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Discriminant subsequences |  |  |  |  |  |
| Differentiating between sexes |  |  |  |  |  |
| Cohabitational subsequences that best discriminate |  |  |  |  |  |
| Remember that we observe only since age 20! |  |  |  |  |  |
| Subsequence | Chi-2 | Support | Freq. Men | Freq. Women | Diff |
| 1 (LH) | 38.3 | 0.72 | 0.795 | 0.651 | 0.144 |
| $2(2 \mathrm{P}) \rightarrow(\mathrm{U})$ | 22.4 | 0.58 | 0.642 | 0.521 | 0.122 |
| $3(\mathrm{LH}) \rightarrow$ (U) | 19.0 | 0.27 | 0.316 | 0.216 | 0.101 |
| $4(\mathrm{LH}) \rightarrow$ (C) | 18.3 | 0.38 | 0.436 | 0.328 | 0.109 |
| $5(2 \mathrm{P}) \rightarrow$ (LH) | 18.3 | 0.62 | 0.676 | 0.567 | 0.108 |
| $6(2 \mathrm{P}) \rightarrow(\mathrm{A}) \rightarrow(\mathrm{U})$ | 17.5 | 0.21 | 0.253 | 0.164 | 0.089 |

## SHP Life Event Histories

Frequent Swiss life course subsequences
Merged cohabitational and occupational sequences 12 most frequent subsequences, min support 150

|  | Subsequence | Support | Count | \#Transitions | \#Events |
| ---: | :--- | :---: | :---: | :---: | :---: |
| 1 | $(\mathrm{FT}) \rightarrow(\mathrm{U})$ | 0.695 | 1045 | 2 | 2 |
| 2 | $(2 \mathrm{P}) \rightarrow(\mathrm{LH})$ | 0.621 | 934 | 2 | 2 |
| 3 | $(\mathrm{FT}) \rightarrow(\mathrm{C})$ | 0.583 | 876 | 2 | 2 |
| 4 | $(2 \mathrm{P}) \rightarrow(\mathrm{U})$ | 0.582 | 874 | 2 | 2 |
| 5 | $(\mathrm{FT}) \rightarrow(\mathrm{LH})$ | 0.555 | 834 | 2 | 2 |
| 6 | $(2 \mathrm{P}) \rightarrow(\mathrm{C})$ | 0.477 | 717 | 2 | 2 |
| 7 | $(\mathrm{LH}, \mathrm{U})$ | 0.454 | 682 | 1 | 2 |
| 8 | $(\mathrm{U}) \rightarrow(\mathrm{C})$ | 0.429 | 645 | 2 | 2 |
| 9 | $(2 \mathrm{P}) \rightarrow(\mathrm{LH}, \mathrm{U})$ | 0.392 | 589 | 2 | 3 |
| 10 | $(\mathrm{LH}) \rightarrow(\mathrm{C})$ | 0.382 | 574 | 2 | 2 |
| 11 | $(2 \mathrm{P}, \mathrm{FT})$ | 0.378 | 568 | 1 | 2 |
| 12 | $(\mathrm{~A}) \rightarrow(\mathrm{U})$ | 0.376 | 565 | 2 | 2 |
|  |  |  |  |  | LIVEs |

SHP Life Event Histories
Differentiating be
Cohabitational subsequences that discriminate sex at the $1 \%$ level

8/6/2012gr 36/59 $\quad$ LVES

Color by sign and signiticance of Pearson's residual

- Negative 0.01 ■ Negative 0.05 neutral $\square$ Postive 0.05 Positive 0.01


Occupational subsequences that discriminate sex at the $0.1 \%$ level


| SHP Life Event Histories |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Discriminant subsequences |  |  |  |  |  |
| Differentiating between sexes |  |  |  |  |  |
| Mixed events: Subsequences that best discriminate sex |  |  |  |  |  |
| Subsequence | Chi-2 | Support | Freq. Men | Freq. Women | Diff |
| 1 (FT) $\rightarrow$ (AH) | 322.7 | 0.26 | 0.060 | 0.470 | -0.410 |
| 2 (AH) | 317.5 | 0.41 | 0.181 | 0.634 | -0.453 |
| 3 (PT) | 269.7 | 0.28 | 0.088 | 0.469 | -0.381 |
| $4(\mathrm{U}) \rightarrow(\mathrm{PT})$ | 260.4 | 0.20 | 0.036 | 0.373 | -0.337 |
| $5(\mathrm{FT}) \rightarrow$ (PT) | 247.5 | 0.22 | 0.051 | 0.387 | -0.337 |
| $6(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{AH})$ | 228.2 | 0.16 | 0.016 | 0.302 | -0.286 |
| $7(\mathrm{U}) \rightarrow(\mathrm{AH})$ | 226.0 | 0.20 | 0.041 | 0.350 | -0.309 |
| $8(\mathrm{AH}) \rightarrow(\mathrm{PT})$ | 195.5 | 0.13 | 0.008 | 0.252 | -0.244 |
| $9(\mathrm{C}) \rightarrow$ (PT) | 193.3 | 0.15 | 0.019 | 0.273 | -0.254 |
| $10(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow$ (PT) | 192.7 | 0.16 | 0.027 | 0.289 | -0.262 |




SHP Life Event Histories
Differentiating among birth cohorts
Mixed events: Subsequences that best discriminate birth cohorts


## SHP Life Event Histori

Discriminant subsequences
Mixed events: Subsequences that best discriminate birth cohorts

|  | Subsequence | Chi-2 | Support | $1910-25$ | $1926-45$ | $1946-57$ |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | $(\mathrm{PT})$ | 64.5 | 0.28 | 0.042 | 0.205 | 0.362 |
| 2 | $(\mathrm{U}) \rightarrow(\mathrm{PT})$ | 63.0 | 0.20 | 0.014 | 0.135 | 0.281 |
| 3 | $(\mathrm{FT}) \rightarrow(\mathrm{PT})$ | 56.1 | 0.22 | 0.014 | 0.156 | 0.291 |
| 4 | $(\mathrm{~A}) \rightarrow(\mathrm{PT})$ | 46.3 | 0.11 | 0.028 | 0.055 | 0.160 |
| 5 | $(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$ | 38.5 | 0.16 | 0.000 | 0.114 | 0.210 |
| 6 | $(\mathrm{ED}) \rightarrow(\mathrm{PT})$ | 36.8 | 0.11 | 0.028 | 0.065 | 0.159 |
| 7 | $(\mathrm{LH}) \rightarrow(\mathrm{PT})$ | 35.9 | 0.15 | 0.014 | 0.109 | 0.204 |
| 8 | $(\mathrm{U}) \rightarrow(\mathrm{C})$ | 34.2 | 0.43 | 0.239 | 0.370 | 0.497 |
| 9 | $(\mathrm{C}) \rightarrow(\mathrm{PT})$ | 34.0 | 0.15 | 0.014 | 0.103 | 0.194 |
| 10 | $(2 \mathrm{P}) \rightarrow(\mathrm{PT})$ | 32.7 | 0.17 | 0.014 | 0.126 | 0.215 |

## SHP Life Event Histories

Cluster analysis

## Pairwise dissimilarities

- Optimal matching distance for event sequences (Studer et al., 2010; Moen, 2000)
- the insertion/deletion of an event;
- a change in the time stamp of a given event;
- Costs: indel $=1$ and unit time displacement $=0.1$
- Normalized distance

$$
d_{N, \text { ome }}(x, y)=\frac{2 d_{\text {ome }}(x, y)}{\Omega(x)+\Omega(y)+d_{\text {ome }}(x, y)}
$$

where $d_{\text {ome }}(x, y)$ is the OME dissimilarity between the time-stamped event sequences $x$ and $y$, and $\Omega(x)$ the total cost for inserting all the events of $x$.

Four cohabitational types (PAM solution)

|  | Man | Woman | Overall |
| :--- | :---: | :---: | :---: |
| $(2 \mathrm{P}) \xrightarrow{2}(\mathrm{~A}, \mathrm{LH}) \xrightarrow{5}(\mathrm{U}) \xrightarrow{3}(\mathrm{C}) \xrightarrow{16}$ | 0.298 | 0.216 | 0.257 |
| $(2 \mathrm{P}) \xrightarrow{6}(\mathrm{C}, \mathrm{LH}, \mathrm{U}) \xrightarrow{20}$ | 0.266 | 0.245 | 0.255 |
| $(2 \mathrm{P}) \xrightarrow{4}(\mathrm{LH}, \mathrm{U}) \xrightarrow{4}(\mathrm{C}) \xrightarrow{18}$ | 0.249 | 0.242 | 0.246 |
| $(\mathrm{~A}) \xrightarrow{4}(\mathrm{U}) \xrightarrow{3}(\mathrm{C}) \xrightarrow{19}$ | 0.138 | 0.234 | 0.186 |
| $(2 \mathrm{P}) \xrightarrow{26}$ | 0.049 | 0.063 | 0.056 |
| $\xrightarrow{ }$ |  |  |  |


|  | $1910-1924$ | $1925-1945$ | $1946-1957$ | Overall |
| :--- | :---: | :---: | :---: | :---: |
| $(2 \mathrm{P}) \xrightarrow{2}(\mathrm{~A}, \mathrm{LH}) \xrightarrow{5}(\mathrm{U}) \xrightarrow{3}(\mathrm{C}) \xrightarrow{16}$ | 0.183 | 0.235 | 0.282 | 0.257 |
| $(2 \mathrm{P}) \xrightarrow{6}(\mathrm{C}, \mathrm{LH}, \mathrm{U}) \xrightarrow{20}$ | 0.380 | 0.310 | 0.198 | 0.255 |
| $(2 \mathrm{P}) \xrightarrow{4}(\mathrm{LH}, \mathrm{U}) \xrightarrow{4}(\mathrm{C}) \xrightarrow{18}$ | 0.211 | 0.211 | 0.278 | 0.246 |
| $(\mathrm{~A}) \xrightarrow{4}(\mathrm{U}) \xrightarrow{3}(\mathrm{C}) \xrightarrow{19}$ | 0.113 | 0.164 | 0.212 | 0.186 |
| $(2 \mathrm{P}) \xrightarrow{26}$ | 0.113 | 0.080 | 0.030 | 0.056 |

```
SHP Life Event Histories
    Cluster analysis
Occupational trajectory types (PAM solution)
```

|  | Man | Woman | Overall |
| :---: | :---: | :---: | :---: |
| (FT) $\xrightarrow{26}$ | 0.488 | 0.286 | 0.387 |
| (FT) $\xrightarrow{6}(\mathrm{AH}) \xrightarrow{20}$ | 0.041 | 0.345 | 0.193 |
| $(\mathrm{ED}) \xrightarrow{\xrightarrow{1}}(\mathrm{FT}) \xrightarrow{25}$ | 0.185 | 0.181 | 0.183 |
| (AH) $\xrightarrow{26}$ | 0.100 | 0.140 | 0.120 |
| (ED) $\xrightarrow{6}(\mathrm{FT}) \xrightarrow{20}$ | 0.186 | 0.048 | 0.117 |


|  | $1910-1924$ | $1925-1945$ | $1946-1957$ | Overall |
| :--- | :---: | :---: | :---: | :---: |
| (FT) $\xrightarrow{26}$ | 0.338 | 0.404 | 0.378 | 0.387 |
| (FT) $\xrightarrow[\rightarrow]{\text { (AH) } \xrightarrow{20}}$ | 0.141 | 0.209 | 0.184 | 0.193 |
| (ED) $\xrightarrow[\rightarrow]{ }$ (FT) $\xrightarrow{25}$ | 0.127 | 0.155 | 0.212 | 0.183 |
| (AH) $\xrightarrow{26}$ | 0.239 | 0.135 | 0.096 | 0.120 |
| (ED) $\xrightarrow{6}($ FT $) \xrightarrow{20}$ | 0.155 | 0.097 | 0.131 | 0.117 |

## SHP Life Event Histories <br> Cluster analysis

## Cluster of cohabitational trajectories



## SHP Life Event Histories

Cluster analysis
Clusters of occupational trajectories





$$
\begin{gathered}
\text { group }=5, \text { rendered: } 65.3 \%, \mathrm{n}=176 \\
\text { PB } \\
\text { PB } \\
\text { NB } \\
\text { AH } \\
\text { PT } \\
\text { PT } \\
\text { FT } \\
\text { ED } \\
\end{gathered}
$$

?
order postion

## P Life Event Histories <br> Conclusion

## Conclusion

- Three approaches for event sequences
- frequent episodes
- discriminant episodes
- cluster analysis
- Complementary insights
- most common characteristics
- salient distinctions between groups
- identify types of trajectories
- Easy to extend to other types of analyses (representative sequences, discrepancy analyses, ...)


## HP Life Event Histories

Conclusion

## Conclusion 2

- Work continues ...
- There are often too many frequent subsequences!
- How can we structure those subsequences?
- Eliminate redundant subsequences, i.e., when you experience one subsequence you also experiment all its subsequences.
- Count only maximal frequent subsequences
- For (FT) $\rightarrow$ (AH) $\rightarrow$ (PT) we would not count the occurrence of (FT) $\rightarrow$ (AH), (FT) $\rightarrow$ (PT) or (AH) $\rightarrow$ (PT)
- Group together sequences shared by same individuals.
- Clustering frequent subsequences


## SHP Life Event Histories

Conclusion

## References I

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo (1995).
Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, pp. 307-328. Menlo Park, CA: AAAI Press.

Agrawal, R. and R. Srikant (1994). Fast algorithm for mining association rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo (Eds.), Proceedings 1994 International Conference on Very Large Data Base (VLDB'94), Santiago de Chile, San-Mateo, pp. 487-499. Morgan-Kaufman.
Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In P. S. Yu and A. L. P. Chen (Eds.), Proceedings of the International Conference on Data Engeneering (ICDE), Taipei, Taiwan, pp. 487-499. IEEE Computer Society.
Bettini, C., X. S. Wang, and S. Jajodia (1996). Testing complex temporal relationships involving multiple granularities and its application to data mining (extended abstract). In PODS '96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, New York, pp. 68-78. ACM Press.

## P Life Event Histories

Conclusion

## References II

Billari, F. C., J. Fürnkranz, and A. Prskawetz (2006). Timing, sequencing, and quantum of life course events: A machine learning approach. European Journal of Population 22(1), 37-65.
Bürgin, R., G. Ritschard, et E. Rousseaux (2012). Exploration graphique de données séquentielles. In Atelier Fouille Visuelle de Données : méthologie et évaluation, EGC 2012, Bordeaux, pp. 39-50. Association EGC
Gabadinho, A., G. Ritschard, M. Studer, and N. S. Müller (2009). Mining sequence data in R with the TraMineR package: A user's guide. Technica report, Department of Econometrics and Laboratory of Demography, University of Geneva, Geneva

Joshi, M. V., G. Karypis, and V. Kumar (2001). A universal formulation of sequential patterns. In Proceedings of the KDD'2001 workshop on Temporal Data Mining, San Fransisco, August 2001.

Mannila, H., H. Toivonen, and A. I. Verkamo (1995). Discovering frequent episodes in sequences. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995, pp. 210-215. AAAI Press.

## HP Life Event Histories

## References III

Mannila, H., H. Toivonen, and A. I. Verkamo (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259-289.
Masseglia, F. (2002). Algorithmes et applications pour l'extraction de motifs séquentiels dans le domaine de la fouille de données : de l'incrémental au temps réel. Ph. D. thesis, Université de Versailles Saint-Quentin en Yvelines.
Moen, P. (2000). Attribute, Event Sequence, and Event Type Similarity Notions for Data Mining. PhD thesis, University of Helsinki.
Ritschard, G., A. Gabadinho, N. S. Müller, and M. Studer (2008). Mining event histories: A social science perspective. International Journal of Data Mining, Modelling and Management 1(1), 68-90
Ritschard, G., M. Studer, N. Muller, and A. Gabadinho (2007). Comparing and classifying personal life courses: From time to event methods to sequence analysis. In 2nd Symposium of COST Action C34 (Gender and Well-Being). The Transmission of Well-Being: Marriage Strategies and Inheritance Systems in Europe from 17th-20th Centuries. University of Minho, Guimaraes, Portugal, April 25-28, 2007.


SHP Life Event Histories
Conclusion

## References IV

Srikant, R. and R. Agrawal (1996). Mining sequential patterns: Generalizations and performance improvements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin (Eds.), Advances in Database Technologies - 5th International Conference on Extending Database Technology (EDBT'96), Avignon, France, Volume 1057, pp. 3-17. Springer-Verlag.
Studer, M., N. S. Müller, G. Ritschard, et A. Gabadinho (2010). Classer, discriminer et visualiser des séquences d'événements. Revue des nouvelles technologies de l'information RNTI E-19, 37-48

Widmer, E. and G. Ritschard (2009). The de-standardization of the life course: Are men and women equal? Advances in Life Course Research 14(1-2), 28-39.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1/2), 31-60.

