Mining Life Event Sequences

Gilbert Ritschard and Matthias Studer

NCCR LIVES and Institute for demographic and life course studies
University of Geneva
http://mephisto.unige.ch
Society For Longitudinal and Life Course Studies International

Conference

Amsterdam, September 23-25, 2013

```
Mining Life Event Sequences
    Introduction
    Objectives
        Objectives (continued)
```

- Demonstrate the kind of results that can be obtained by mining event subsequences
- Search for
- most frequent subsequences
- subsequences that best discriminate groups (provided covariate)
- New concept of frequent maximal subsequence for more interesting results

Mining Life Event Sequences

Introduction
Objectives
Objectives

- Data-mining-based methods (pattern mining)
- Discovering interesting information from sequences of life events, i.e., on how people sequence important life events
- What is the most typical succession of family or professional life events?
- Are there standard ways of sequencing those events?
- What are the most typical events that occur after a given subsequence such as after leaving home and ending education?
- How is the sequencing of events related to covariates?
- Which event sequencings do best discriminate groups such as men and women?
- Mining of frequent (Agrawal and Srikant, 1995; Mannila et al., 1995; Bettini et al., 1996; Mannila et al., 1997; Zaki, 2001) and discriminant event subsequences

Mining Life Event Sequences
 Introductio

Objectives

What's new

- Previous attempts with event sequences in social sciences (e.g. Billari et al., 2006; Ritschard et al., 2007) mainly consisted in counting predefined subsequences

Switzerland, SHP 2002 biographical survey $(n=5560)$

Event sequences versus state sequences

- State sequence: states last a whole interval period

age	20	21	22	23	24	25	26
state	$2 P$	$2 P$	A	A	UC	UC	UC

- Event sequence: events occur at a given (time) position
- Interest in their order, in their sequencing
- Can be time stamped (TSE)

id	Timestamp	Event
101	22	Leaving Home
101	24	Start living with partner
101	24	Childbirth

Mining Life Event Sequences

troduction
The Biographical Data from the Swiss Household Panel

The Biographical SHP Data

- Sequences derived from the biographical survey conducted in 2002 by the Swiss Household Panel www. swisspanel.ch
- Retain the 1503 cases studied in Widmer and Ritschard (2009) with techniques for state sequences
- Two channels: Cohabitational and occupational
- Only individuals aged 45 or more at survey time
- Focus on life trajectory between 20 and 45 years
- Granularity is yearly level
Introduction
The Biograptical Data from the Swiss Household Pane
The Occupational State Sequences

\qquad

Short and long state labels

Mining Life Event Sequences

Introduction
The Biogrial Data from the Swiss Household Panel
Events associated to cohabitational state transitions

- For cohabitational trajectories, we convert states to events by defining the events associated to the state transitions

	2 P	1P	PP	A	U	UC	UN	C	F	0
2 P	"2P"	"1P"	"PP"	"LH, A"	"LH,U"	"LH, U, C"	"LH,U,C"	"LH,C"	"LH, A"	"LH,0"
1 P	"2P"	"1P"	"PP"	"LH, A"	"LH,U"	"LH, U, C"	"LH,U,C"	"LH, C"	"LH, A"	"LH,0"
PP	"2P"	"1P"	"PP"	"LH, A"	"LH,U"	"LH, U, C"	"Lh, U, C"	"LH, C"	"LH, A"	"LH, O"
A	"2P"	"1P"	"PP"	"A"	"U"	"U,C"	"U,C"	"C"	""	"0"
U	"2P"	"1P"	"PP"	"UE, A"	"U"	"C"	"C"	"C"	"UE, A"	"UE,0"
UC	"2P"	"1P"	"PP"	"UE, CL, A"	"CL"	"U,C"	"CL, C"	"UE"	"UE, CL, A"	"UE, CL, 0"
UN	"2P"	"1P"	"PP"	"UE,CL,A"	"CL"	"C"	"U,C"	"UE,C"	"UE, CL, A"	"UE, CL, O"
C	"2P"	"1P"	"PP"	"CL, A"	"CL, U"	"U"	"CL, C"	"C"	"CL, A"	"CL, 0 "
F	"2P"	"1P"	"PP"	""	"U"	"U,C"	"U,C"	"C"	"A"	"0"
0	"2P"	"1P"	"PP"	"A"	"U"	"U,C"	"U,C"	"C"	"A"	"0"

- For occupational trajectories, we assign an event to the start of each spell in a state.

Mining Life Event Sequences

Introduction
he Biographical Data from the Swiss Household Panel
Rendering cohabitational event sequences
(Bürgin and Ritschard, 2012)

[^0]
Mining Life Event Sequences

Introductio
Rendering occupational event sequences
(Bürgin and Ritschard, 2012)

Frequent subsequences versus Frequent itemsets
Frequent subsequences versus Frequent itemsets - 1

- Mining of frequent itemsets and association rules has been popularized in the 90's with the work of Agrawal and Srikant (1994); Agrawal et al. (1995) and their Apriori algorithm.
- Find out items that customers often buy together
- Symptoms that often occur together before a failure

```
Mining Life Event Sequences
    Frequent subsequences in TraMineR
    Terminolgy
        Events and transitions
```

- Event sequence: ordered list of transitions.
- Transition: a set of non ordered events.

Example

(LHome, Union) \rightarrow (Marriage) \rightarrow (Childbirth)

- (LHome, Union) and (Marriage) are transitions.
- "LHome", "Union" et "Marriage" are events.

Mining Life Event Sequences

Introduction
Frequent subsequences versus Frequent itemsets - 2

- Interest on sequences for accounting for the time order of the buys or symptoms
- Mining typical event sequences is a specialized case of the mining of frequent itemsets
- More complicated however
- Must specify a counting method: How should we count multiple occurrences of a subsequence in a same sequence?
- Which time span should be covered? Maximal gap between two events? ...
- Best known algorithms by Bettini et al. (1996), Srikant and Agrawal (1996), Mannila et al. (1997) and Zaki (2001).
- Algorithm in TraMineR is adaptation of the tree search described in Masseglia (2002).

Mining Life Event Sequences
 Frequent subsequences in TraMineR
 Terminolgy
 \section*{Subsequence}

- A subsequence B of a sequence A is an event sequence such that
- each event of B is an event of A,
- events of B are in same order as in A.

Example

A (LHome, Union) \rightarrow (Marriage) \rightarrow (Childbirth).
B (LHome, Marriage) \rightarrow (Childbirth).
C (LHome) \rightarrow (Childbirth).

- C is a subsequence of A and B, since order of events is respected.
- B is not a subsequence of A, since we don't know in B whether "LHome" occurs before "Marriage".

LVES宔:

Frequent and discriminant subsequences

- Support of a subsequence: number of sequences that contain the subsequence.
- Frequent subsequence: sequence with support greater than a minimal support.
- A subsequence is discriminant between groups when its support varies significantly across groups

Mining Life Event Sequences

Frequent Swiss life course subsequences

Frequent cohabitational subsequences

10 most frequent subsequences, min support $=50$

- With at least 2 events

Remember that we assigned the state at age 20 as start event

	Subsequence	Support	Count	\#Transitions	\#Events
1	$(2 \mathrm{P}) \rightarrow(\mathrm{LH})$	0.621	934	2	2
2	$(2 \mathrm{P}) \rightarrow(\mathrm{U})$	0.582	874	2	2
3	$(2 \mathrm{P}) \rightarrow(\mathrm{C})$	0.477	717	2	2
4	$(\mathrm{LH}, \mathrm{U})$	0.454	682	1	2
5	$(\mathrm{U}) \rightarrow(\mathrm{C})$	0.429	645	2	2
6	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}, \mathrm{U})$	0.392	589	2	3
7	$(\mathrm{LH}) \rightarrow(\mathrm{C})$	0.382	574	2	2
8	$(\mathrm{~A}) \rightarrow(\mathrm{U})$	0.376	565	2	2
9	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{C})$	0.325	489	3	3
10	(C, U)	0.291	437	1	2

[^1]Frequent subsequences easily extends to multichannel

- Here we have cohabitational and occupational trajectories
- Merging the two series of time stamped events
- we get mixed cohabitational/occupational event sequences

Mining Life Event Sequences
Frequent Swiss life course subsequence
Merged cohabitational and occupational sequences
12 most frequent subsequences, min support 150

	Subsequence	Support	Count	\#Transitions	\#Events
1	$(\mathrm{FT}) \rightarrow(\mathrm{U})$	0.695	1045	2	2
2	$(2 \mathrm{P}) \rightarrow(\mathrm{LH})$	0.621	934	2	2
3	$(\mathrm{FT}) \rightarrow(\mathrm{C})$	0.583	876	2	2
4	$(2 \mathrm{P}) \rightarrow(\mathrm{U})$	0.582	874	2	2
5	$(\mathrm{FT}) \rightarrow(\mathrm{LH})$	0.555	834	2	2
6	$(2 \mathrm{P}) \rightarrow(\mathrm{C})$	0.477	717	2	2
7	$(\mathrm{LH}, \mathrm{U})$	0.454	682	1	2
8	$(\mathrm{U}) \rightarrow(\mathrm{C})$	0.429	645	2	2
9	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}, \mathrm{U})$	0.392	589	2	3
10	$(\mathrm{LH}) \rightarrow(\mathrm{C})$	0.382	574	2	2
11	$(2 \mathrm{P}, \mathrm{FT})$	0.378	568	1	2
12	$(\mathrm{~A}) \rightarrow(\mathrm{U})$	0.376	565	2	2

Mining Life Event Sequences					
Mixed events: Subsequences that best discriminate se					
Subsequence	Chi-2	Support	Freq. Men	Freq. Women	Diff
1 (FT) \rightarrow (AH)	322.7	0.26	0.060	0.470	-0.410
2 (AH)	317.5	0.41	0.181	0.634	-0.453
3 (PT)	269.7	0.28	0.088	0.469	-0.381
$4(\mathrm{U}) \rightarrow$ (PT)	260.4	0.20	0.036	0.373	-0.337
$5(\mathrm{FT}) \rightarrow(\mathrm{PT})$	247.5	0.22	0.051	0.387	-0.337
$6(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow$ (AH)	228.2	0.16	0.016	0.302	-0.286
$7(\mathrm{U}) \rightarrow(\mathrm{AH})$	226.0	0.20	0.041	0.350	-0.309
$8(\mathrm{AH}) \rightarrow(\mathrm{PT})$	195.5	0.13	0.008	0.252	-0.244
$9(\mathrm{C}) \rightarrow$ (PT)	193.3	0.15	0.019	0.273	-0.254
$10(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	192.7	0.16	0.027	0.289	-0.262

- Mainly occupational events (FT, PT and AH)
- In conjunction with a few cohabitational ones (U and C)

Mining Life Event Sequences

Frequent Swiss life course subsequences

Interesting frequent subsequences

- To get interesting knowledge we need to compare
most frequent subsequences
- with longer less frequent subsequences in which they are included.
- For example

	Subsequence	Support	Count	\#Transitions	\#Events
2	$(2 \mathrm{P}) \rightarrow($ LH $)$	0.621	934	2	2
4	(2P) \rightarrow (U)	0.582	874	2	2
9	$(2 P) \rightarrow($ LH, U $)$	0.392	589	2	3

- Here, we know that
- among the 62.1% who left home (LH) after living with both parents (2P) when 20 years old
39.2/62.1 = 63\% left home to start a union the same year

Mining Life Event Sequences
 Differentiating between

Mixed events: Subsequences that best discriminate sex at the 0.1% level

Color by sign and significance of Pearson's residual

- Negative 0.01 - Negative 0.05 n neutral \square Positive 0.05 - Postive 0.01

Mining Life Event Sequences

Discriminant subsequences
Mixed events: Subsequences that best discriminate birth cohorts

	Subsequence	Chi-2	Support	$1910-25$	$1926-45$	$1946-57$
1	$($ PT $)$	64.5	0.28	0.042	0.205	0.362
2	$(\mathrm{U}) \rightarrow(\mathrm{PT})$	63.0	0.20	0.014	0.135	0.281
3	$(\mathrm{FT}) \rightarrow(\mathrm{PT})$	56.1	0.22	0.014	0.156	0.291
4	$(\mathrm{~A}) \rightarrow(\mathrm{PT})$	46.3	0.11	0.028	0.055	0.160
5	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	38.5	0.16	0.000	0.114	0.210
6	$(\mathrm{ED}) \rightarrow(\mathrm{PT})$	36.8	0.11	0.028	0.065	0.159
7	$(\mathrm{LH}) \rightarrow(\mathrm{PT})$	35.9	0.15	0.014	0.109	0.204
8	$(\mathrm{U}) \rightarrow(\mathrm{C})$	34.2	0.43	0.239	0.370	0.497
9	$(\mathrm{C}) \rightarrow(\mathrm{PT})$	34.0	0.15	0.014	0.103	0.194
10	$(2 \mathrm{P}) \rightarrow(\mathrm{PT})$	32.7	0.17	0.014	0.126	0.215

- Mainly emergence of Part-time (PT)
LIVES": (3) unverit

Mining Life Event Sequences

Maximal subsequences
Too many frequent subsequences

- There are often too many frequent subsequences!
- How can we structure those subsequences?
- Eliminate redundant subsequences: When you experience one subsequence you also experiment all its subsequences.
- Count only maximal subsequences
- If subsequence (FT) \rightarrow (AH) \rightarrow (PT) is observed,
- we would not count the occurrence of (FT) \rightarrow (AH), (FT) \rightarrow (PT) or (AH) \rightarrow (PT)

Frequent maximal subsequence: Definition

- Frequent maximal subsequence: In each sequence, we count only those subsequences which are not themselves a subsequence of another frequent subsequence present in the same sequence.
- Example: The subsequence (2P) \rightarrow (LH) will be considered a maximal subsequence of sequences which do not also have a frequent supersequence such as (2P) $\rightarrow(\mathrm{LH}, \mathrm{U})$.

Frequent maximal subsequences: algorithm
(1) Find frequent subsequences for the selected support
(2) Starting from the longest obtained frequent subsequence

- Adjust the count of each of its subsequence
(by reducing their counts by the number of occurrences of the considered frequent sequence)
- Delete from the list subsequences with counts falling below the support threshold.
(3) Iterate on frequent subsequences ordered in decreasing order of length (using their already adjusted counts)

ining Life Event Sequenc

Maximal frequent sequence in pattern mining

- Our definition of a frequent maximal subsequence differs from the notion of maximal frequent sequence used in pattern mining, where a frequent sequence is said maximal if none of its supersequence is frequent.
- In pattern mining, if s is a maximal frequent sequence, then none of its subsequences is a maximal frequent subsequence, even if it occurs frequently in sequences which do not include s.
- This is not very useful for life trajectories where we may be interested to know that
- It is frequent to start a union (U) without having a child afterwards (U) \rightarrow (C)

Mining Life Event Sequences
 Maximal subsequences

Max subsequences, cohabitational-occupational events 12 most frequent maximal subsequences, min support 150

	Subsequence	Support	Count	\#Transitions	\#Events
1	$(2 \mathrm{P}) \rightarrow(\mathrm{C}, \mathrm{LH}, \mathrm{U})$	0.160	241	2	4
2	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{AH})$	0.159	239	3	3
3	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	0.158	237	3	3
4	$(\mathrm{FT}) \rightarrow(\mathrm{A}, \mathrm{LH}) \rightarrow(\mathrm{U})$	0.152	228	3	4
5	$(2 \mathrm{P}, \mathrm{ED}) \rightarrow(\mathrm{FT}) \rightarrow(\mathrm{U})$	0.140	210	3	4
6	$(\mathrm{FT}) \rightarrow(\mathrm{C}, \mathrm{LH}, \mathrm{U})$	0.140	210	2	4
7	$(\mathrm{AH}) \rightarrow(\mathrm{C})$	0.137	206	2	2
8	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{AH})$	0.133	200	3	3
9	$(\mathrm{AH}) \rightarrow(\mathrm{U})$	0.130	195	2	2
10	$(2 \mathrm{P}, \mathrm{FT}) \rightarrow(\mathrm{LH}, \mathrm{U})$	0.129	194	2	4
11	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{PT})$	0.128	193	3	3
12	$(2 \mathrm{P}, \mathrm{FT}) \rightarrow(\mathrm{AH})$	0.126	190	2	3

ining Life Event Sequen

Max subsequences, cohabitational-occupational events 12 most frequent maximal subsequences, min support 200

	Subsequence	Support	Count	\#Transitions	\#Events
1	$(2 \mathrm{P}, \mathrm{FT}) \rightarrow(\mathrm{LH}, \mathrm{U})$	0.229	344	2	4
2	$(\mathrm{~A}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{C})$	0.194	291	3	3
3	$(2 \mathrm{P}, \mathrm{ED}) \rightarrow(\mathrm{LH})$	0.189	284	2	3
4	$(\mathrm{ED}) \rightarrow(\mathrm{FT}) \rightarrow(\mathrm{C})$	0.189	284	3	3
5	$(2 \mathrm{P}) \rightarrow(\mathrm{A}, \mathrm{LH}) \rightarrow(\mathrm{U})$	0.181	272	3	4
6	$(2 \mathrm{P}, \mathrm{FT}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{C})$	0.178	268	3	4
7	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}, \mathrm{U}) \rightarrow(\mathrm{C})$	0.168	253	3	4
8	$(2 \mathrm{P}) \rightarrow(\mathrm{PT})$	0.166	250	2	2
9	$(\mathrm{FT}) \rightarrow(\mathrm{LH}, \mathrm{U}) \rightarrow(\mathrm{C})$	0.166	250	3	4
10	$(2 \mathrm{P}) \rightarrow(\mathrm{C}, \mathrm{LH}, \mathrm{U})$	0.160	241	2	4
11	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{AH})$	0.159	239	3	3
12	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	0.158	237	3	3

Mining Life Event SequencesMaximal subsequences						
Frequent max-subsequences discriminating birth cohorts Minsupport=150						
	Subsequence	Chi-2	Support	1910-25	1926-45	1946-57
1	$(\mathrm{A}) \rightarrow$ (PT)	46.3	0.11	0.028	0.055	0.160
2	$(\mathrm{FT}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	38.5	0.16	0.000	0.114	0.210
3	$(E D) \rightarrow(P T)$	36.8	0.11	0.028	0.065	0.159
	$(2 \mathrm{P}) \rightarrow(\mathrm{LH}) \rightarrow(\mathrm{PT})$	30.4	0.13	0.014	0.090	0.172
	$(2 \mathrm{P}) \rightarrow(\mathrm{U}) \rightarrow(\mathrm{PT})$	27.0	0.12	0.000	0.083	0.154
	$(2 \mathrm{P}) \rightarrow(\mathrm{C}, \mathrm{LH}, \mathrm{U})$	26.2	0.16	0.268	0.202	0.115
	$(\mathrm{U}) \rightarrow$ (UE)	26.1	0.12	0.028	0.082	0.159
	$(\mathrm{FT}) \rightarrow(\mathrm{UE})$	22.9	0.10	0.028	0.068	0.137
	$(\mathrm{FT}) \rightarrow(\mathrm{C}) \rightarrow(\mathrm{PT})$	22.8	0.12	0.000	0.094	0.155
	$(\mathrm{FT}) \rightarrow(\mathrm{C}, \mathrm{LH}, \mathrm{U})$	21.8	0.14	0.155	0.185	0.100
28/10/2013gr 46/55						

Mining Life Event Sequen

Maximal subsequence

Solutions change with chosen support

- As seen, solutions vary with chosen minsupport
- For minsupport $=0$, we get the set of complete event sequences.
- We are working on criteria to select an optimal minsupport
- to minimize the number of subsequences with no representative
- maximize the average number of representatives
- ..

Mining Life Event Sequence
 Maximal subsequences

Frequent max-subsequences discriminating between cohorts

ning Life Event Sequences

 Conclusion
Conclusion

- Three approaches for event sequences
- frequent episodes
- discriminant episodes
- cluster analysis (not addressed in this presentation)
- Complementary insights
- most common characteristics
- salient distinctions between groups
- identify types of trajectories
- Easy to extend to other types of analyses (representative sequences, discrepancy analyses, ...)

Mining Life Event Sequences

Conclusion

Conclusion

- Looking at frequent max-subsequences produces more directly interpretable results
- Issue: Solutions vary with the minsupport threshold

Mining Life Event Sequences

Conclusion

References I

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo (1995).
Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, pp. 307-328. Menlo Park, CA: AAAI Press.
Agrawal, R. and R. Srikant (1994). Fast algorithm for mining association rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo (Eds.), Proceedings 1994 International Conference on Very Large Data Base (VLDB'94), Santiago de Chile, San-Mateo, pp. 487-499. Morgan-Kaufman.
Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In P. S. Yu and A. L. P. Chen (Eds.), Proceedings of the International Conference on Data Engeneering (ICDE), Taipei, Taiwan, pp. 487-499. IEEE Computer Society.
Bettini, C., X. S. Wang, and S. Jajodia (1996). Testing complex temporal relationships involving multiple granularities and its application to data mining (extended abstract). In PODS '96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, New York, pp. 68-78. ACM Press.

ing Life Event Sequence

Conclusion

References II

Billari, F. C., J. Fürnkranz, and A. Prskawetz (2006). Timing, sequencing, and quantum of life course events: A machine learning approach. European Journal of Population 22(1), 37-65.
Bürgin, R. and G. Ritschard (2012). Categorical parallel coordinate plot. In LaCOSA Lausanne Conference On Sequence Analysis, University of Lausanne June 6th-8th 2012, Lausanne. Poster.
Gabadinho, A., G. Ritschard, M. Studer, and N. S. Müller (2009). Mining sequence data in R with the TraMineR package: A user's guide. Technical report, Department of Econometrics and Laboratory of Demography, University of Geneva, Geneva
Mannila, H., H. Toivonen, and A. I. Verkamo (1995). Discovering frequent episodes in sequences. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, August 20-21, 1995, pp. 210-215. AAAI Press.
Mannila, H., H. Toivonen, and A. I. Verkamo (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259-289.

Mining Life Event Sequences
 Conclusion

References III

Masseglia, F. (2002). Algorithmes et applications pour l'extraction de motifs séquentiels dans le domaine de la fouille de données: de l'incrémental au temps réel. Ph. D. thesis, Université de Versailles Saint-Quentin en Yvelines. Ritschard, G., R. Bürgin, and M. Studer (2013). Exploratory mining of life event histories. In J. J. McArdle and G. Ritschard (Eds.), Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences, Quantitative Methodology, pp. 221-253. New York: Routledge.
Ritschard, G., A. Gabadinho, N. S. Müller, and M. Studer (2008). Mining event histories: A social science perspective. International Journal of Data Mining, Modelling and Management 1(1), 68-90
Ritschard, G., M. Studer, N. Muller, and A. Gabadinho (2007). Comparing and classifying personal life courses: From time to event methods to sequence analysis. In 2nd Symposium of COST Action C34 (Gender and Well-Being). The Transmission of Well-Being: Marriage Strategies and Inheritance Systems in Europe from 17th-20th Centuries. University of Minho, Guimaraes, Portugal, April 25-28, 2007. séquentiels dans le domaine de la fouille de donnees: de lincrémental au

Mining Life Event Sequences
Conclusion G. Gardarin (Eds.), Advances in Database Technologies - 5th International Conference on Extending Database Technology (EDBT'96), Avignon, France,

Widmer, E. and G. Ritschard (2009). The de-standardization of the life course:

References IV

Srikant, R. and R. Agrawal (1996). Mining sequential patterns: Generalizations and performance improvements. In P. M. G. Apers, M. Bouzeghoub, and Volume 1057, pp. 3-17. Springer-Verlag. Are men and women equal? Advances in Life Course Research 14(1-2), 28-39.
Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1/2), 31-60.

[^0]: 28/10/2013gr 14/55

[^1]: Mining Life Event Sequences
 Frequent Swiss life course subsequences

