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Mining Life Event Sequences

Introduction

Objectives

Objectives

Data-mining-based methods (pattern mining)
Discovering interesting information from sequences of life
events, i.e., on how people sequence important life events

What is the most typical succession of family or professional life
events?
Are there standard ways of sequencing those events?
What are the most typical events that occur after a given
subsequence such as after leaving home and ending education?
How is the sequencing of events related to covariates?
Which event sequencings do best discriminate groups such as
men and women?

Mining of frequent (Agrawal and Srikant, 1995; Mannila et al., 1995;

Bettini et al., 1996; Mannila et al., 1997; Zaki, 2001) and discriminant
event subsequences
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Mining Life Event Sequences

Introduction

Objectives

Objectives (continued)

Demonstrate the kind of results that can be obtained by mining
event subsequences

Search for

most frequent subsequences
subsequences that best discriminate groups (provided covariate)

New concept of frequent maximal subsequence for more
interesting results
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Introduction

Objectives

What’s new

Previous attempts with event sequences in social sciences (e.g.

Billari et al., 2006; Ritschard et al., 2007) mainly consisted in counting
predefined subsequences.
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Switzerland, SHP 2002 biographical survey (n = 5560)
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Introduction

Objectives

Event sequences versus state sequences

State sequence: states last a whole interval period

age 20 21 22 23 24 25 26
state 2P 2P A A UC UC UC

Event sequence: events occur at a given (time) position

Interest in their order, in their sequencing
Can be time stamped (TSE)

id Timestamp Event
101 22 Leaving Home
101 24 Start living with partner
101 24 Childbirth
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Introduction

The Biographical Data from the Swiss Household Panel

The Biographical SHP Data

Sequences derived from the biographical survey conducted in
2002 by the Swiss Household Panel www.swisspanel.ch

Retain the 1503 cases studied in Widmer and Ritschard (2009)
with techniques for state sequences

Two channels: Cohabitational and occupational

Only individuals aged 45 or more at survey time

Focus on life trajectory between 20 and 45 years

Granularity is yearly level
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Mining Life Event Sequences

Introduction

The Biographical Data from the Swiss Household Panel

The Cohabitational State Sequences

28/10/2013gr 10/55
 

Mining Life Event Sequences

Introduction

The Biographical Data from the Swiss Household Panel

The Occupational State Sequences
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Introduction

The Biographical Data from the Swiss Household Panel

Short and long state labels

Cohabitational Occupational
2P Biological father and mother Mi Missing
1P One biological parent FT Full time
PP One biological parent with her/his partner PT Part time
A Alone NB Neg. break
U With partner PB Pos. break
UC Partner and biological child AH At home
UN Partner and non biological child RE Retired
C Biological child and no partner ED Education
F Friends
O Other
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Introduction

The Biographical Data from the Swiss Household Panel

Events associated to cohabitational state transitions

For cohabitational trajectories, we convert states to events by
defining the events associated to the state transitions

2P 1P PP A U UC UN C F O

2P "2P" "1P" "PP" "LH,A" "LH,U" "LH,U,C" "LH,U,C" "LH,C" "LH,A" "LH,O"

1P "2P" "1P" "PP" "LH,A" "LH,U" "LH,U,C" "LH,U,C" "LH,C" "LH,A" "LH,O"

PP "2P" "1P" "PP" "LH,A" "LH,U" "LH,U,C" "LH,U,C" "LH,C" "LH,A" "LH,O"

A "2P" "1P" "PP" "A" "U" "U,C" "U,C" "C" "" "O"

U "2P" "1P" "PP" "UE,A" "U" "C" "C" "C" "UE,A" "UE,O"

UC "2P" "1P" "PP" "UE,CL,A" "CL" "U,C" "CL,C" "UE" "UE,CL,A" "UE,CL,O"

UN "2P" "1P" "PP" "UE,CL,A" "CL" "C" "U,C" "UE,C" "UE,CL,A" "UE,CL,O"

C "2P" "1P" "PP" "CL,A" "CL,U" "U" "CL,C" "C" "CL,A" "CL,O"

F "2P" "1P" "PP" "" "U" "U,C" "U,C" "C" "A" "O"

O "2P" "1P" "PP" "A" "U" "U,C" "U,C" "C" "A" "O"

For occupational trajectories, we assign an event to the start of
each spell in a state.
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Introduction

The Biographical Data from the Swiss Household Panel

Rendering cohabitational event sequences
(Bürgin and Ritschard, 2012)
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Introduction

The Biographical Data from the Swiss Household Panel

Rendering occupational event sequences
(Bürgin and Ritschard, 2012)
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Introduction

Frequent subsequences versus Frequent itemsets

Frequent subsequences versus Frequent itemsets - 1

Mining of frequent itemsets and association rules has been
popularized in the 90’s with the work of Agrawal and Srikant (1994);

Agrawal et al. (1995) and their Apriori algorithm.

Find out items that customers often buy together
Symptoms that often occur together before a failure
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Introduction

Frequent subsequences versus Frequent itemsets

Frequent subsequences versus Frequent itemsets - 2

Interest on sequences for accounting for the time order of the
buys or symptoms

Mining typical event sequences is a specialized case of the
mining of frequent itemsets

More complicated however
Must specify a counting method: How should we count multiple
occurrences of a subsequence in a same sequence?
Which time span should be covered? Maximal gap between two
events? ...

Best known algorithms by Bettini et al. (1996), Srikant and Agrawal

(1996), Mannila et al. (1997) and Zaki (2001).

Algorithm in TraMineR is adaptation of the tree search
described in Masseglia (2002).
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Frequent subsequences in TraMineR

Terminolgy

Events and transitions

Event sequence: ordered list of transitions.

Transition: a set of non ordered events.

Example

(LHome, Union) → (Marriage) → (Childbirth)

(LHome, Union) and (Marriage) are transitions.

“LHome”, “Union” et “Marriage” are events.

28/10/2013gr 21/55
 

Mining Life Event Sequences

Frequent subsequences in TraMineR

Terminolgy

Subsequence

A subsequence B of a sequence A is an event sequence such
that

each event of B is an event of A,
events of B are in same order as in A.

Example

A (LHome, Union) → (Marriage) → (Childbirth).

B (LHome, Marriage) → (Childbirth).

C (LHome) → (Childbirth).

C is a subsequence of A and B, since order of events is
respected.

B is not a subsequence of A, since we don’t know in B whether
“LHome” occurs before “Marriage”.
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Frequent subsequences in TraMineR

Terminolgy

Frequent and discriminant subsequences

Support of a subsequence: number of sequences that contain
the subsequence.

Frequent subsequence: sequence with support greater than a
minimal support.
A subsequence is discriminant between groups when its support
varies significantly across groups.
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Frequent Swiss life course subsequences

Frequent cohabitational subsequences
10 most frequent subsequences, min support = 50

With at least 2 events
Remember that we assigned the state at age 20 as start event

Subsequence Support Count #Transitions #Events

1 (2P) → (LH) 0.621 934 2 2
2 (2P) → (U) 0.582 874 2 2
3 (2P) → (C) 0.477 717 2 2
4 (LH,U) 0.454 682 1 2
5 (U) → (C) 0.429 645 2 2
6 (2P) → (LH,U) 0.392 589 2 3
7 (LH) → (C) 0.382 574 2 2
8 (A) → (U) 0.376 565 2 2
9 (2P) → (LH) → (C) 0.325 489 3 3

10 (C,U) 0.291 437 1 2
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Frequent Swiss life course subsequences

Frequent occupational subsequences
Most frequent subsequences, min support = 50

With at least 2 events
Remember that we assigned the state at age 20 as start event

Subsequence Support Count #Transitions #Events

1 (ED) → (FT) 0.283 425 2 2
2 (FT) → (AH) 0.265 398 2 2
3 (FT) → (PT) 0.219 329 2 2
4 (AH) → (PT) 0.130 195 2 2
5 (ED) → (AH) 0.113 170 2 2
6 (ED) → (PT) 0.112 168 2 2
7 (FT) → (FT) 0.112 168 2 2
8 (FT) → (AH) → (PT) 0.105 158 3 3
9 (FT) → (ED) 0.073 109 2 2

10 (ED) → (FT) → (PT) 0.071 107 3 3
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Frequent Swiss life course subsequences

Frequent subsequences easily extends to multichannel

Here we have cohabitational and occupational trajectories

Merging the two series of time stamped events

we get mixed cohabitational/occupational event sequences
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Frequent Swiss life course subsequences

Merged cohabitational and occupational sequences
12 most frequent subsequences, min support 150

Subsequence Support Count #Transitions #Events

1 (FT) → (U) 0.695 1045 2 2
2 (2P) → (LH) 0.621 934 2 2
3 (FT) → (C) 0.583 876 2 2
4 (2P) → (U) 0.582 874 2 2
5 (FT) → (LH) 0.555 834 2 2
6 (2P) → (C) 0.477 717 2 2
7 (LH,U) 0.454 682 1 2
8 (U) → (C) 0.429 645 2 2
9 (2P) → (LH,U) 0.392 589 2 3

10 (LH) → (C) 0.382 574 2 2
11 (2P,FT) 0.378 568 1 2
12 (A) → (U) 0.376 565 2 2
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Frequent Swiss life course subsequences

Interesting frequent subsequences

To get interesting knowledge we need to compare

most frequent subsequences
with longer less frequent subsequences in which they are
included.

For example,
Subsequence Support Count #Transitions #Events

2 (2P) → (LH) 0.621 934 2 2
4 (2P) → (U) 0.582 874 2 2
9 (2P) → (LH,U) 0.392 589 2 3

Here, we know that

among the 62.1% who left home (LH) after living with both
parents (2P) when 20 years old
39.2/62.1 = 63% left home to start a union the same year
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Discriminant subsequences

Differentiating between sexes

Mixed events: Subsequences that best discriminate sex

Subsequence Chi-2 Support Freq. Men Freq. Women Diff
1 (FT) → (AH) 322.7 0.26 0.060 0.470 -0.410
2 (AH) 317.5 0.41 0.181 0.634 -0.453
3 (PT) 269.7 0.28 0.088 0.469 -0.381
4 (U) → (PT) 260.4 0.20 0.036 0.373 -0.337
5 (FT) → (PT) 247.5 0.22 0.051 0.387 -0.337
6 (FT) → (U) → (AH) 228.2 0.16 0.016 0.302 -0.286
7 (U) → (AH) 226.0 0.20 0.041 0.350 -0.309
8 (AH) → (PT) 195.5 0.13 0.008 0.252 -0.244
9 (C) → (PT) 193.3 0.15 0.019 0.273 -0.254

10 (FT) → (U) → (PT) 192.7 0.16 0.027 0.289 -0.262

Mainly occupational events (FT, PT and AH)

In conjunction with a few cohabitational ones (U and C)
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Discriminant subsequences

Differentiating between sexes

Mixed events: Subsequences that best discriminate sex
at the 0.1% level
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Discriminant subsequences

Differentiating among birth cohorts

Birth cohort distribution
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Discriminant subsequences

Differentiating among birth cohorts

Mixed events: Subsequences that best discriminate
birth cohorts

Subsequence Chi-2 Support 1910-25 1926-45 1946-57
1 (PT) 64.5 0.28 0.042 0.205 0.362
2 (U) → (PT) 63.0 0.20 0.014 0.135 0.281
3 (FT) → (PT) 56.1 0.22 0.014 0.156 0.291
4 (A) → (PT) 46.3 0.11 0.028 0.055 0.160
5 (FT) → (U) → (PT) 38.5 0.16 0.000 0.114 0.210
6 (ED) → (PT) 36.8 0.11 0.028 0.065 0.159
7 (LH) → (PT) 35.9 0.15 0.014 0.109 0.204
8 (U) → (C) 34.2 0.43 0.239 0.370 0.497
9 (C) → (PT) 34.0 0.15 0.014 0.103 0.194

10 (2P) → (PT) 32.7 0.17 0.014 0.126 0.215

Mainly emergence of Part-time (PT)
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Discriminant subsequences

Differentiating among birth cohorts

Mixed events: Subsequences that best discriminate
birth cohorts
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Maximal subsequences

Too many frequent subsequences

There are often too many frequent subsequences!

How can we structure those subsequences?
Eliminate redundant subsequences: When you experience one
subsequence you also experiment all its subsequences.

Count only maximal subsequences
If subsequence (FT) → (AH) → (PT) is observed,
we would not count the occurrence of
(FT) → (AH), (FT) → (PT) or (AH) → (PT)
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Maximal subsequences

Frequent maximal subsequence: Definition

Frequent maximal subsequence: In each sequence, we count
only those subsequences which are not themselves a
subsequence of another frequent subsequence present in the
same sequence.

Example: The subsequence (2P) → (LH) will be considered a
maximal subsequence of sequences which do not also have a
frequent supersequence such as (2P) → (LH,U).
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Maximal subsequences

Maximal frequent sequence in pattern mining

Our definition of a frequent maximal subsequence differs from
the notion of maximal frequent sequence used in pattern
mining, where a frequent sequence is said maximal if none of
its supersequence is frequent.

In pattern mining, if s is a maximal frequent sequence, then
none of its subsequences is a maximal frequent subsequence,
even if it occurs frequently in sequences which do not include s.

This is not very useful for life trajectories where we may be
interested to know that

It is frequent to start a union (U) without having a child
afterwards (U)→(C)
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Maximal subsequences

Frequent maximal subsequences: algorithm

1 Find frequent subsequences for the selected support
2 Starting from the longest obtained frequent subsequence

Adjust the count of each of its subsequence
(by reducing their counts by the number of occurrences of the considered

frequent sequence).
Delete from the list subsequences with counts falling below the
support threshold.

3 Iterate on frequent subsequences ordered in decreasing order of
length (using their already adjusted counts)
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Maximal subsequences

Max subsequences, cohabitational-occupational events
12 most frequent maximal subsequences, min support 150

Subsequence Support Count #Transitions #Events

1 (2P) → (C,LH,U) 0.160 241 2 4
2 (FT) → (U) → (AH) 0.159 239 3 3
3 (FT) → (U) → (PT) 0.158 237 3 3
4 (FT) → (A,LH) → (U) 0.152 228 3 4
5 (2P,ED) → (FT) → (U) 0.140 210 3 4
6 (FT) → (C,LH,U) 0.140 210 2 4
7 (AH) → (C) 0.137 206 2 2
8 (2P) → (LH) → (AH) 0.133 200 3 3
9 (AH) → (U) 0.130 195 2 2

10 (2P,FT) → (LH,U) 0.129 194 2 4
11 (2P) → (LH) → (PT) 0.128 193 3 3
12 (2P,FT) → (AH) 0.126 190 2 3
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Maximal subsequences

Max subsequences, cohabitational-occupational events
12 most frequent maximal subsequences, min support 200

Subsequence Support Count #Transitions #Events

1 (2P,FT) → (LH,U) 0.229 344 2 4
2 (A) → (U) → (C) 0.194 291 3 3
3 (2P,ED) → (LH) 0.189 284 2 3
4 (ED) → (FT) → (C) 0.189 284 3 3
5 (2P) → (A,LH) → (U) 0.181 272 3 4
6 (2P,FT) → (LH) → (C) 0.178 268 3 4
7 (2P) → (LH,U) → (C) 0.168 253 3 4
8 (2P) → (PT) 0.166 250 2 2
9 (FT) → (LH,U) → (C) 0.166 250 3 4

10 (2P) → (C,LH,U) 0.160 241 2 4
11 (FT) → (U) → (AH) 0.159 239 3 3
12 (FT) → (U) → (PT) 0.158 237 3 3
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Maximal subsequences

Solutions change with chosen support

As seen, solutions vary with chosen minsupport

For minsupport = 0, we get the set of complete event
sequences.

We are working on criteria to select an optimal minsupport

to minimize the number of subsequences with no representative
maximize the average number of representatives
...
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Maximal subsequences

Frequent max-subsequences discriminating birth cohorts
Minsupport=150

Subsequence Chi-2 Support 1910-25 1926-45 1946-57
1 (A) → (PT) 46.3 0.11 0.028 0.055 0.160
2 (FT) → (U) → (PT) 38.5 0.16 0.000 0.114 0.210
3 (ED) → (PT) 36.8 0.11 0.028 0.065 0.159
4 (2P) → (LH) → (PT) 30.4 0.13 0.014 0.090 0.172
5 (2P) → (U) → (PT) 27.0 0.12 0.000 0.083 0.154
6 (2P) → (C,LH,U) 26.2 0.16 0.268 0.202 0.115
7 (U) → (UE) 26.1 0.12 0.028 0.082 0.159
8 (FT) → (UE) 22.9 0.10 0.028 0.068 0.137
9 (FT) → (C) → (PT) 22.8 0.12 0.000 0.094 0.155

10 (FT) → (C,LH,U) 21.8 0.14 0.155 0.185 0.100
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Maximal subsequences

Frequent max-subsequences discriminating between
cohorts
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Conclusion

Conclusion

Three approaches for event sequences

frequent episodes
discriminant episodes
cluster analysis (not addressed in this presentation)

Complementary insights

most common characteristics
salient distinctions between groups
identify types of trajectories

Easy to extend to other types of analyses (representative
sequences, discrepancy analyses, ...)

28/10/2013gr 49/55
 

Mining Life Event Sequences

Conclusion

Conclusion

Looking at frequent max-subsequences produces more directly
interpretable results

Issue: Solutions vary with the minsupport threshold
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Conclusion

Thank You!Thank You!
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