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Mining Event Histories

o My talk is about life courses,
@ So, let me start with an example of scientific life course

date event

1970-1979  Studies in econometrics

1980-1992 Mathematical Economics

1985-... Work with Social scientists (Family studies)
Interest in Statistics for social sciences

1990-1995 Interest in Neural Networks

2000-... KDD and data mining (Clustering, supervised learning)
2003-... Work with historians, demographers, psychologists
(longitudinal data)
2005-... KDD and Data mining approaches
for analysing life course data
2007-... Start a SNF project on “Mining Event Histories”

Mining Event Histories

Outline

@ Sequence Analysis in Social Sciences
@ Survival Trees
© Characterizing, rendering and clustering sequence data

@ Mining Frequent Episodes
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Motivation

Motivation

@ Individual life course paradigm.
o Following macro quantities (e.g. #divorces, fertility rate, mean
education level, ...) over time
insufficient for understanding social behavior.
o Need to follow individual life courses.
@ Data availability
o Large panel surveys in many countries
(SHP, CHER, SILC, GGP, ...)
o Biographical retrospective surveys (FFS, ...).
o Statistical matching of censuses, population registers and other
administrative data.
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Motivation

@ Need for suited methods for discovering interesting knowledge
from these individual longitudinal data.
@ Social scientists use

o Essentially Survival analysis (Event History Analysis)
o More rarely sequential data analysis (Optimal Matching,
Markov Chain Models)

o Could social scientists benefit from data-mining approaches?

o Which methods?
o Are there specific issues with those methods for social
scientists?

Mining Event Histories
Sequence Analysis in Social Sciences.
Motivation

Motivation: KD in Social sciences

e In KDD (Knowledge discovery in databases) and data mining,
focus on prediction and classification.

@ Improve prediction and classification errors.

@ In Social science, aim is understanding/explaining (social)
behaviors.

@ Hence focus is on process rather than output.
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What kind of data?

@ What kind of data are we dealing with?

@ Mainly categorical longitudinal data describing life courses

@ Data can be in different forms ...
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What kind of data?

ontology of longitudinal data (Aristotelean tree)

one state per time unit ¢
several states at each t

Longitudinal data
time stamped events

spell duration

not
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Alternative views of Individual Longitudinal Data

Table: Time stamped events, record for Sandra

ending secondary school in 1970 LIESWELRLMEYAN [NETGET-RIETA]

Table: State sequence view, Sandra

year 1969 1970 1971 1972 1973
civil status single single single single
education level primary secondary secondary secondary secondary
job no no first first first
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Transforming time stamped events into state sequences
Example: the “BioFam” data

o Data from the retrospective survey conducted in 2002 by the
Swiss Household Panel (SHP)

(with support of Federal Statistical Office, Swiss National
Fund for Scientific Research, University of Neuchatel.)

Retrospective survey: 5560 individuals

Retained familial life events: Leaving Home, First childbirth,
First marriage and First divorce.

Age 15 to 45 — 2601 remaining individuals, born between
1909 et 1957.
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Creating state sequences

@ Example of time stamped data:

individual ‘ LHome ‘ marriage  childbirth ‘ divorce
1 | 1989 | 1990 | 1992 | NA
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Deriving the states

Need one state for each combination of events:

LHome | marriage | childbirth | divorce
0 no no no no
1 yes no no no
2 no yes yes/no no
3 yes yes no no
4 no no yes no
5 yes no yes no
6 yes yes yes no
7 | yes/no yes yes/no yes




Mining Event Histories
Sequence Analysis in Social Sciences
What kind of data?

From events to states

Example of transformation :
@ events:

individual LHome ‘ marriage ‘ childbirth ‘ divorce

1 ] 1989 | 1990 | 1992 | NA
@ states:
individual | ... 1988 1989 1090 1991 1992 1993
1 |.. 0 0 1 3 3 6
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Issues with life course data

@ Incomplete sequences
o Censored and truncated data:
Cases falling out of observation before experiencing an event of
interest.
o Sequences of varying length.

@ Time varying predictors.
o Example: When analysing time to divorce, presence of children
is a time varying predictor.
@ Data collected by clusters

o Example: Household panel surveys.
o Multi-level analysis to account for unobserved shared
characteristics of members of a same cluster.
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Issues with life course data

Multi-level: Simple linear regression example

8 ° A y=156-0.8x
y=125-08x

Children

y=32+02x

Education
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Classical statistical approaches
Survival Approaches

@ Survival or Event history analysis (Blossfeld and Rohwer, 2002)
o Focuses on one event.
o Concerned with duration until event occurs
or with hazard of experiencing event.

@ Survival curves: Distribution of duration until event occurs

S(t)y=p(T>1t) .

o Hazard models: Regression like models for S(t,x) or hazard
h(t) =p(T=t| T >1)

h(t,x) = g(t. Bo + Bix1 + Baxa(t) + - ) .

Mining Event Histories
Sequence Analysis in Social Sciences
Methods for Longitudinal Data

Survival curves (Switzerland, SHP 2002 biographical survey)
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Analysis of sequences

@ Frequencies of given subsequences
o Essentially event sequences, e.g. (First job — Marriage).
o Subsequences considered as categories = Methods for
categorical data apply (Frequencies, cross tables, log-linear
models, logistic regression, ...).
@ Markov chain models
o State sequences.
e Focuses on transition rates between states.
Does the rate also depend on previous states?
How many previous states are significant?
@ Optimal Matching (Abbott and Forrest, 1986) .
o State sequences.
o Edit distance (Levenshtein, 1966; Needleman and Wunsch,
1970) between pairs of sequences.
o Clustering of sequences.
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Typology of methods for life course data

Issues
Questions duration/hazard state/event sequencing
descriptive e Survival curves: o Frequencies of given
Parametric patterns
(Weibull, Gompertz, ...) e Optimal matching
and non parametric clustering, MDS
(Kaplan-Meier, Nelson- e Rendering sequences
Aalen) estimators. e Discovering typical
episodes

e Markov models

o Mobility trees

e Discriminating episodes

e Sequence Heterogeneity
Analysis (Anova)

e Hazard regression models
(Cox, ...)

e Survival trees

causality
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Marriage survival, SHP biographical data

SHP biographical retrospective survey
http://www.swisspanel.ch

@ SHP retrospective survey: 2001 (860) and 2002 (4700 cases)
@ We consider only data collected in 2002.
@ Data completed with variables from 2002 wave (language).

Characteristics of retained data for divorce
(individuals who get married at least once)
men  women Total
Total 1414 1656 3070
1st marriage dissolution 231 308 539
16.3% 18.6% 17.6%
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Distribution by birth cohort

Birth year

500
|

300
I

Frequency

200
I

r T T T T 1
1910 1920 1930 1940 1950 1960

year

Mining Event Histories
Survival Trees
Marriage survival, SHP biographical data
Marriage duration until divorce

Survival curves

prob. de survie
prob. de survie

o 10 20 2 0 o 10 2 30
Durée du mariage, Femmes Durée du mariage, Hommes

—— 1942 etavant
———1943-1952
1953 et apres.
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Marriage duration until divorce

Hazard model

o Discrete time model (logistic regression on person-year data)

o exp(B) gives the Odds Ratio, i.e. change in the odd h/(1 — h)
when covariate increased by 1 unit.

exp(B) Sig.

| birthyr 1.0088 0.002
university 1.22 0.043
| child 0.73 0.000
language  unknwn 1.47 0.000
French 1.26 0.007

German 1 ref

Italian 0.89 0.537

‘ Constant 0.0000000004 0.000
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Survival trees: Principle

@ Target is survival curve or some other survival characteristic.
@ Aim: Partition data set into groups that
o differ as much as possible (max between class variability)

o Example: Segal (1988) maximizes difference in KM survival
curves by selecting split with smallest p-value of Tarone-Ware
Chi-square statistics

W,-(d,-1 - E(D;))

W = ,- (WI,Z var(D;)) 1/2

@ are as homogeneous as possible (min within class variability)

o Example: Leblanc and Crowley (1992) maximize gain in
deviance (-log-likelihood) of relative risk estimates.
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Divorce, Switzerland, Differences in KM Survival Curves |
Root

S<o0%at 11
-
S(30) = 77%
n=3619
e= 622
Birth Cohort
T TW(1)= 548, p < 0001 1
<1940 > 1940
PRy ey
S(30) = 86% S(30) = 73%
—— —
n= 841 n=2778
e= 123 o= 4%9
T
Language Child
TW(1)= 225, p < 0001 TW( p< 0001
Non French French Yes No, Kmss.
S < 90%at 26 S <o0%at 11 Ssg0%at il S %0%at 5
S(30) = 89% S(30) = 74% S(30) = 75% S(30) = 64%
(30) (30)
n=174 n=2175 n= 603
e= 44 e= 561 e= 13
T 5 T
University Language University
TW(1)=8.08, p = 0045 [ TW(1)=9.77,p = 0018 ‘ TW(1)=4.45,p = 0349 ‘
No Yes Non French French, unknw o Yes
| |
Secealze $=90% at 10] Sesg0% at 13 S<0%at 8] [Sg90%at 6 §<%%at 3
S(30) = 90% S(30) = 76% S(30) = 77% S(30) = 70% S(30) = 65% S(30) = 59%
— —
n= 616 n= 51 n= 1444 n=731 n= 517 n= 86
e= 67 e= 12 e= 217 e= 144 e= 115 e= 23
K] ] ] 5 T 5
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Divorce, Switzerland, Differences in KM Survival Curves |l

Cohort <=1940 & Non French Speaking & University

Cohort <=1940 & French Speaking
Gohort> 1940 & No Child & University

Gohort> 1940 & No Child & < University

« Gohort> 1940 & Child & German or talian Speaking
Gohort> 1940 & Child & French or Unknown Speaking

o 10 20 30 40
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Divorce, Switzerland, Relative risk

Root

Birth Cohort
[ ADev=559
<1940
1=06
[}
n= 841
e= 123
T
Language
ADev= 184
Non French French Yles No, rlniss.
1 1
1=048 A=11 2=1.06 2=188
- — [ = ]
n= 667 n=174 n=2175 n= 603
e= 79 e= 44 e= 361 e= 138

Mining Event Histories
Survival Trees
Example

Hazard model with interaction

@ Adding interaction effects detected with the tree approach
o improves significantly the fit (sig Ax? = 0.004)

exp(B) Sig.
born after 1940 1.78  0.000
university 1.22  0.049
child 094 0.619
language unknwn  1.50  0.000
French 1.12  0.282

German 1 ref

Italian 092 0.677

b__before_40*French 1.46  0.028
b_after_40*child 0.68 0.010
Constant 0.008 0.000
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Issues with survival trees in social sciences

@ Dealing with time varying predictors
o Segal (1992) discusses few possibilities, none being really
satisfactory.
o Huang et al. (1998) propose a piecewise constant approach
suitable for discrete variables and limited number of changes.
o Room for development ...
@ Multi-level analysis
e How can we account for multi-level effects in survival trees,
and more generally in trees?
o Conjecture: Should be possible to include unobserved shared
effect in deviance-based splitting criteria.
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Life trajectories

Sequence analysis

@ Survival approaches not useful in a unitary (holistic)
perspective of the whole life course.

@ Sequence analysis of whole collection of life events better
suited for such holistic approach (Billari, 2005).
Rendering sequences

o Colorize your life courses

@ Results from the analysis of the retrospective Swiss Household
Panel (SHP) survey.

@ Focus on visualization of life course data.
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Life trajectories

Evolution tendencies in familial life course trajectories

Sequence analysis techniques permit to test hypotheses about
evolution in these familial life trajectories. (Elzinga and Liefbroer,
2007):

@ De-standardization: Some states and events of familial life are
shared by decreasing proportions of the population, occur at
more dispersed ages and their duration is also more scattered.

@ De-institutionalization: Social and temporal organization of
life courses becomes less driven by normative, legal or
institutional rules.

e Differentiation: Number of distinct steps lived by individual
increases.
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Characterizing sets of sequences

@ Sequence of transversal measures (between entropy, ...)
id t1 tb t3

1 B B D
2 A B C
3 B B A

@ Summary of longitudinal measures (sequence entropy, ...)
id & th t3

1 B B D
2 A B C
3 B B A
@ Other global characteristics: Central sequence, Sequence
diversity, ...
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Entropy

@ Entropy: Measure of uncertainty regarding state predictability.

o p;, proportion of cases (or time points) in state /.

o Shannon h(p) = >, —p;log,(pi)
o Other types of entropies: Quadratic (Gini), Daroczy, ...

@ Two ways of using entropies.

o (Transversal) entropy of the state at each time (age) point:
Entropy increases with diversity of states observed at each
time point (age).

o (Longitudinal) entropy of each individual sequences: Entropy
increases with diversity of states during the observed life
course and varies with the time spend in each state.
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Illustrative data

Data from the 2002 SHP biographical survey
Interested in relationship between

o Cohabitational trajectories (10 states)
o Professional trajectories (8 states)

@ We use the coding retained by Gauthier (2007)

@ Focus on ages 20 to 45 (sequence length = 26 years)
@ 1503 cases (751 women, 752 men)
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Transversal entropy at each time (age) point

Living Arrangement Trajectories Professional Trajectories

@ @ - | — 1010-1040 = - 1041-1050 - - + 1051-1057

T T T T T T T T T T T T T T
A0 A23 A2 A20 A2 A3 A A4l Ad4

T T T T T T T T T T T T T T T T
A0 A23 A6 A0 A2 A3S A8 AL Ad

Age Age
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Transversal entropy at each time (age) point

Men : Living Arrangement Trajectories Women : Living Arrangement Trajectories

@ @ _ | — 1010-1040 = -+ 1041-1050 - - + 1951-1057

Entropy

T T T T T T T T T T T T T
A0 A28 A6 A0 A2 A5 A38 A4l Ad

T T T T T T T T T T T T T T T T
A0 A2 A6 A2 A2 A3S A8 AL A

Age Age
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Transversal entropy at each time (age) point

Men: Professional Trajectories Women: Professional Trajectories

. @ o | — 1910-1040 = - 1041-1950 - - - 19511057
& &

e
A0 A23 A6 A2 A2 A3S A8 AL A4

L e
A0 A2 A6 A0 A2 A3S A8 AL AM

Age Age
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Hypothesis about longitudinal entropies

@ Cohabitational and professional life trajectories
e become less stable
e more diversified
@ Their entropy tends to increase for younger generations.
@ Are increases in professional trajectories related to increases in
cohabitational trajectories?
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Entropy of cohabitational trajectories

Men: Living Arrangment Trajectories Women: Living Arrangment Trajectories

TS L A oo s s
p(F > ) = .000*** p(F > f) = 073"
all 2 by 2 differences significant coh3 significantly (.02) different from cohl
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Entropy of professional trajectories

Men: Professional Trajectories Women: Professional Trajectories

T T T T T T
1910-1040 1941-1050 1951-1057 1910-1040 1941-1050 1051-1057

p(F > f) = .002*** p(F > f) = .001***

coh3 not significantly different from coh2
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Correlation between cohabitational and professional entropies

Overall Men Women
1910-1940 0.08 * 0.11 * 0.19 ***
1941-1950 0.12 ** 0.14 ** 0.30 ***

1951-1957 0.15 ** 0.25 *** 0.31 =
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Clustering, Multidimensional scaling and more

@ Once you are able to compute 2 by 2 distances between
sequences you can among others:

o Cluster sequences
@ Analyse the trajectory heterogeneity (Generalized ANOVA)

@ Make scatter plot representation of sets of sequences using
multidimensional scaling.
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Distances between sequences

o Edit distance (known as Optimal matching in Social sciences)
(Levenshtein, 1966; Needleman and Wunsch, 1970; Abbott and
Forrest, 1986)

o d(x,y) Total cost of insert, deletion and substitution changes
required to transform sequence x into y.
o Different solutions depending on indel and substitution costs.

@ Other metrics proposed by (Elzinga, 2008)
o LCP: Longest common prefix (also longest common postfix)
o LCS: Longest common subsequence
(same as OM with indel cost = 1, and substitution cost = 2).
o NMS: Number of matching subsequences
o ...

Elzinga (2008) proposes a nice formalization of these metrics.
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Distances between sequences: Clustering

Clustering with OM distances: Dendrograms

Cohabitational trajectories, Ward method Professional trajectories, Ward method

R g

587 581
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(OM Distances, Indel=1, Subst. Cost based on Trans. Rate)

LA Prof

(OM Distances, Indel=1, Subst. Cost based on Trans. Rate)
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LA, State distribution by age, within cluster
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LA, Most frequent sequences by cluster

Type 1 Conjogl Triectoris (16.) ez

Type 4 Nesti Traectories (7 %) Type 5 S or Rcont
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LA, Sequence diversity within cluster

Type 1 Conjugal Trajectores (16.%) Type 2: Parenal Tralectories, Sow Transiton (19%) Type 3: Parontal Trlectoies, Fast Transton (48 %)

Type 4 Nestalgc Trajectois (7%) Type 5 Sco or Raconsttuted Famiy Tralectorie (11 %)
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LA, Birth year distribution by cluster

Type 1 Conogl Thiectories (16) ez

Type 3 Parena Trjecoris,Fas Transson (48%)

Type 4 Nestig Traectories (7 %) Type 5 S or Reconsted Famiy Traeciories (11%) overal
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Prof, State distribution by age, within cluster

Type 1 Full Time Traectoe (53 %) e 2: Mo Pan T

e Trsecores (13%) Type 3 At Home Trajctres (16 %)
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Prof, Most frequent sequences by cluster

Type 1.l Time Trjctres (52 %) Type 2 Mied Part Time - Home Trjectares (13 %) Type 3: At o Trsecories (16 %)

N . @ Positive break @ Positive break
Mining Event Histories Mining Event Histories
Characterizing, rendering and clustering sequence data Characterizing, rendering and clustering sequence data
Distances between sequences: Clustering Distances between sequences: Clustering
Prof, Sequence diversity within cluster Prof, Birth year distribution by cluster
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Heterogeneity of set of sequences

@ Sum of squares can be expressed in terms of the distances
between each pair of points

n 1 n n
$S = Y-y =233 -y’
i1 i=1j=it1
1 n n
= ;Z > d
i=1j=i+1

@ Setting dj; to the OM, LCP, LCS, ... distance, we get a
measure of diversity or heterogeneity of sequences.

o Can apply ANOVA principle to sequences.
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Heterogeneity analysis and sequence discrimination
Heterogeneity analysis

Professional trajectories by sex
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Sequence Tree

S k307

/ \

S REO0857

A LN\

Pttty

Mining Event Histories

Characterizing, rendering and clustering sequence data
Multidimensional Scaling representation of sequences

Multidimensional Scaling: Principle

@ Let D be a distance matrix between sequences.
o D computed using OM, LPS, LCS, ... metrics.
o Multidimensional Scaling consists in
o Finding a set of real valued variables (fi, f,) such that the
05 = +/(fn — fi1)? + (fio — f;2)? best approximate the
distances between sequences.
o Plotting the points in the (f, f2) space.
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Multidimensional Scaling representation of sequences

Multidimensional Scaling
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Mining Frequent Episodes

Mining Frequent Episodes

o (Time stamped) event sequences
@ What can we expect from frequent episodes mining?
o GSP (Srikant and Agrawal, 1996)
o MINEPI, WINEPI (Mannila et al., 1997)
o TCG, TAG (Bettini et al., 1996)
o SPADE (Zaki, 2001)
@ Are there specific issues when applying these methods in
social sciences?

Mining Event Histories
Mining Frequent Episodes
What Is It About?

Frequent episodes. What is it?

o Episode: Collection of events occurring frequently together.

@ Mining typical (frequent) episodes:
o Specialized case of mining frequent itemsets.
o Time dimension = Partially ordered events.
@ More complex than unordered itemsets: User must

o specify time constraints (and episode structure constraints).

o select a counting method.

Mining Event Histories

Mining Frequent Episodes
What Is It About?

Episode structure constraints

For people who leave home within 2 years from their 17, what are
typical events occurring until they get married and have a first
child?

edge constraints

\ —
Q
(0,1,10)
LH,17 n 7 arallel
elastic
w=2 w=1

‘ event constraints
node constraint

10




Mining Event Histories
Mining Frequent Episodes
What Is It About?

Counting methods (Joshi et al., 2001)

Searching (U,C)

min gap= 1, max gap= 2, win size= 2

20 21 23 24
—_— indiv. with episode COBJ =1
| —— windows with episode CWIN = 3
(—3—) min win. with episode CminWIN =2
._.'t' distinct occurrences CDIS_o=5
I — é dist. occ. without overlap CDIS =3
—_—
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Example: Counting Alternate Episode Structures

Example: Counting alternate structures (COBJ, no max gap)

30%

25% -

20%

15%

10%

Switzerland, SHP 2002 biographical survey (n = 5560).
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Frequent and discriminant episodes

Frequent episodes, cohabitational and professional trajectories

Getogal aher and mothe
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Discriminant episodes, professional trajectories, women

(Fulltime>At home) (Fulltime)(Ful tme>At home)

e I _0le 1 m

(athomespar tme)

(Fullumes>Part me)

§@DP:DD éQDD

(Fulltme>At e}~ home>Part tme) (Fullime) (At homesPart tme)
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Frequent and discriminant episodes

Discriminant episodes, professional trajectories, men

(issing) (Educaon>Wissing) (Fulime)
N H

(Educaion>Full me) (Educaton)-(Educaion>Ful me)

DDD HDD?DD ]

(Educaton)

5
1
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Summary

e Data mining approaches (survival trees, clustering sequences,
frequent episodes) have promising future in life course
analysis.

o Complement classical statistical outcomes with new insights.

o Their use within social sciences raises specific issues:
o Accounting for multi-level effects when growing survival tree or
mining association rules.
o Handling time varying predictors in survival trees.
o Selecting relevant counting methods (event dependent)?
o Suitable criteria for measuring association strength between
frequent episodes.

11
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Our TraMineR R-package

Let me finish with an Add ...

@ TraMineR, a free life trajectory mining tool

for the free open source R statistical environment.
downloadable from http://cran.r-project.org (CRAN)
@ see also http://mephisto.unige.ch/biomining

Mining Event Histories
Summary

Thank You!
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