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Abstract. Decision tree methods generally suppose that the number of
categories of the attribute to be predicted is fixed. Breiman et al., with
their Twoing criterion in CART, considered gathering the categories of
the predicted attribute into two supermodalities. In this paper, we pro-
pose an extension of this method. We try to merge the categories in an
optimal unspecified number of supermodalities. Our method, called Ar-
bogodäı, allows during tree growing for grouping categories of the target
variable as well as categories of the predictive attributes. It handles both
categorical and quantitative attributes. At the end, the user can chose
to generate either a set of single rules or a set of multi-conclusion rules
that provide interval like predictions.

1 Introduction

Induction trees are among the most popular supervised methods proposed in
the literature. They are appreciated for the simplicity and the high efficacy of
the algorithms, for their ease of use and for the easily interpretable results they
provide. Hastie et al. [15], p. 313, designate them as the learning tool that comes
closest to the requirements of an “off-the-shelf” method.

Many induction tree methods have been proposed so far in the literature.
Some like ID3 [20], C4.5 [21] and CHAID [17, 18] build n-ary trees, others like
CART [6] produce binary trees or, like SIPINA [27, 28], latticed graphs that
generalize trees by allowing the merging of nodes.

All these methods were originally intended for categorical attributes and re-
quire therefore that quantitative variables be discretized. This discretization can
be done at once before growing the tree. Most of the tree growing methods,
nevertheless, handle quantitative variables in an automatic manner by dynami-
cally choosing the optimal discretization thresholds at each node [26, ?,?][]. Some
methods also attempt to reduce the number of categories of nominal attributes by
partitioning them into a smaller number of classes. CART, for example, merges
the categories into two new super-modalities at each new split. This has the ad-
vantage of avoiding to uselessly increase the number of nodes. Indeed, the higher
the number of nodes, the greater are the chances that some of them will have
too few cases to get reliable estimates of the response classes probabilities.
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There are two main ways for partitioning the values of the nominal predictive
attributes.

1. The first is for instance a characteristic feature of CHAID [17]. At each node,
the local discriminating power of each categorical attribute is tested using
all possible partitions of its values. Partitions in two or more groups are
explored. Thus, for each split, a predictor is selected simultaneously with its
locally best partition.

2. The second strategy is used for instance by Breiman et al. [6] in their CART
method. At each node, CART looks only for the best bi-partition of each
predictor. It generates thus only binary trees.

With their Twoing criterion, the authors of CART propose however also a strat-
egy that extends their principle to the response variable. When the response is
multi-valued, using Twoing is equivalent to seek, for every predictor, simultane-
ously the best bi-partition of its values and the best bi-partition of the response
values. The Twoing is the value of the Gini impurity for the best couple of
bi-partitions and is used for selecting the split variable at each node.

In this paper, we extend the principle of a simultaneous search of a double bi-
partition. We combine the CHAID and CART approaches. Like CHAID we look
at each step for the best not necessarily binary partition of the attributes. Like
CART with Twoing we explore also the partitioning of the values of the target
variable. Unlike CART, we do not, however, restrict ourself to bi-partitions. At
each step we look for the simultaneous grouping of the predictor values and of
the target variable values that optimizes the chosen criterion. This gives rise
to a new induction tree method that we call Arbogodäı. This kind of tree is
characterized by a number of value classes of the target variable that varies from
one node to the other. It is dynamically determined at each new split. When
the majority class in a leaf contains several response values, the corresponding
prediction rule becomes a multiple conclusion rule. For instance, we can get a
rule like “a female customer aged between 30 and 40 with a monthly income
ranging from 4000 to 5000 euros will chose a red or blue car”. Indeed, we can
easily compute which of the two colors is more frequent in the leaf. Hence, we
can also derive classical simple rules. With Arbogodäı, the user has the possibility
to chose the kind of rule that best suits her/his needs.

The paper is organized as follows. Section 2 sets the framework and recalls
the goal and principle of induced decision trees. In Section 3, we motivate the
simultaneous n-ary partitioning of the target and predictor values. Section 4
describes the simultaneous row-column merging heuristic. The Arbogodäı tree
growing process that seeks at each step the optimal joint merging of target
and predictor values is described in Section 5. Section 6 discusses the multiple
conclusion nature of the generated rules and how to measure their prediction
error rates. It reports also some experiments with a set of benchmark datasets.
In Section 7, we propose an in depth study of the simultaneous merging heuristic.
Further developments are briefly discussed in the concluding section.
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2 Principle of induction trees and notations

Let Ω be the population concerned by the learning problem. The profile of any
member ω of Ω is described by p variables, X1, . . . , Xp, called either exogenous
variables, predictive attributes or predictors. These variables can be qualitative
or quantitative. The set of values taken by Xj is denoted by Xj . Each variable
Xj , j = 1, . . . , p can be seen as a mapping Xj : Ω → Xj , where Xj , the domain
of the values of Xj , is any not necessarily finite set. We consider also a target
attribute C, sometimes called response, endogenous or dependent variable, and
designate by C the set of response values. Like the Xj ’s, C can be qualitative
or quantitative. Since the attributes Xj and the target variable C take only a
finite number of different values in a given dataset, the sets Xj and C are finite.
We denote by mj the number of different values taken by the attribute Xj and
by ` the number of different response values ci. Thus, C = {c1, . . . , c`}.

The goal of induction trees is then to generate a model φ(X1, . . . , Xp) in the
form of a decision tree for predicting the value of C from the knowledge of the
values taken by the predictive attributes. The tree φ is induced from a training
sample ΩL ⊂ Ω. The validation of the predictive model is done on a test sample
ΩT ⊂ Ω distinct from the former, ΩL ∩ΩT = ∅.

The growing process of the tree is quite simple. As illustrated in Figure 1,
the set ΩL is iteratively split by means of, at each step, one of the predictive
attributes X1, . . . , Xp.

The leaves of the tree obtained at each step t of the growing process define
a partition St of ΩL that becomes finer and finer with t. The root of the tree
corresponds to the trivial partition S0 = {ΩL}.

The goal is to get a partition with each leaf (class of the partition) as pure as
possible, a pure leaf being one in which all the individuals have the same value
for the predicted attribute. The leaf must indeed contain enough individuals to
be reliable.

The tree given in Figure 1 partitions ΩL in three subsets corresponding to
the nodes s2, s3 and s4. In leaf s3 for example, we have the set of cases of ΩL

that take values X1 = male and X2 < 5000. At step t, the partition St is derived
from the previous one St−1 by seeking the best leaf-attribute couple (sk, Xj), i.e.
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Fig. 1. An induced tree
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Table 1. Contingency table defined by Xj at a node s

xj1 . . . xjk . . . xjmj Total

c1 n11 . . . n1k . . . n1mj n1.

...
...

. . .
...

...
...

ci ni1 . . . nik . . . nimj ni.

...
...

...
. . .

...
...

c` n`1 . . . n`k . . . n`mj n`.

Total n.1 . . . n.k . . . n.mj n

that for which the splitting of sk ∈ St−1 according to the values of Xj maximizes
the gain of information on the target variable between St−1 and St. Formally,
letting G(St−1, sk, Xj) be the gain of information when sk is split with attribute
Xj , we seek at step t the leaf-attribute couple (sv, Xu) such that

G(St−1, sv, Xu) = max
k;j

G(St−1, sk, Xj)

The gain of information is usually measured as the reduction in uncertainty for
the target variable or as the increase in the strength of association between the
partition and the target variable. The growing process stops when the criterion
can no longer be improved, i.e. when G(St−1, sv, Xu) ≤ 0, or when some other
stopping criterion is reached.

Let n be the grand total of cases in node s, nik the number of cases with
value ci for the target variable in the class (leaf) sk of the partition S of the cases
in s, n.k the total number of cases in leaf sk, ni. the total number of cases with
value ci in s. The corresponding observed frequencies are denoted respectively
by fik, f.k and fi., and fi|k = nik/n.k stands for the conditional frequency of
value ci in the leaf sk. To be rigorous, the n’s and f ’s should be indexed by the
node label s. We omit it to avoid cumbersome notations.

At any node s of a tree, an attribute Xj defines a partition of the cases
in s. This partition is described by the columns of the `×mj contingency table
(Table 1) that cross-tabulates the target variable (rows) with Xj (columns).

The criteria used to measure the gain of information brought by a split
defined by Xj are computed from this table. For instance, some methods try to
maximize the reduction in uncertainty as measured by entropies. In this case,
the uncertainty after the split is defined as the weighted mean of the uncertainty
of the columns of the contingency Table 1

I(S) =
mj∑
k=1

n.k

n
h(f1|k; . . . ; fi|k; . . . ; f`|k) (1)

where h() is, for example, the Shannon entropy, −
∑`

i=1 fi|k log2 fi|k, or the
quadratic entropy, also known as the Gini diversity index,

∑`
i=1 fi|k(1 − fi|k).

Alternatively, some methods like CHAID, optimize the strength or the statis-
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tical significance of the association between the resulting partition (columns of
Table 1) and the target variable (rows of Table 1).

Let us recall that CHAID tries, at each step, to merge the columns of crossta-
bles like Table 1 to find the best grouping of values for each candidate attribute,
i.e. the grouping that optimizes the criterion. CHAID makes no change, how-
ever, on the values of the target variable. Arbogodäı, like the Twoing approach
in CART, considers merging both columns and rows. Unlike the Twoing rule
that looks for the best solution among 2 × 2 tables only, we seek however the
best cross-partition without constraints on the number of rows and columns.
Section 4 discusses this joint row-column partitioning issue. Before turning to
it, we motivate the approach in Section 3.

3 Motivations for a joint n-ary partitioning

Consider the contingency Table 2. The best bi-partition of its columns is Sbin =
{{a, b}, {d, e}}, whether we use the Gini, the Twoing, the significance of Pear-
son’s Chi-squares or an association measure like the t of Tschuprow. Now, the
best 3 way partition is S3way = {{a}, {b, d}, {e}} with any of the criteria except
Twoing which is not applicable. Clearly S3way cannot be obtained by splitting
the classes of Sbin. This proves that multiple binary partitions are not equivalent
to n-ary partitions and can sometime miss optimal solutions.

Table 2. A n-ary solution different from that of successive binary splits

a b d e Total

c1 200 100 10 1 311
c2 10 150 150 10 320
c3 1 10 100 200 311

Total 211 260 260 211 942

The merging of response values is different in nature from that of the values
of a predictive attribute. Indeed, the partition of the response values does not
translate into a split of the node. Considering such mergings in the optimization
process merits therefore some further justification. This is given by simply ex-
tending the argument of Breiman et al. ([6], p. 105) who argue that searching
for superclasses (the groups of the partitions of the response values) provides
strategic information on the similarities of responses. When two or more re-
sponses, red car and blue car for example, are almost equally frequent it may be
a better strategy to predict that the customer will buy a red or a blue car than
explicitly a red one. Simultaneously, it may be useful to know that yellow and
pink colors are much less probable than all other non red and non blue proposed
colors. There is thus no reason to limit the argument to two superclasses only.
Multi-supermodalities provide a more refined strategic information.

Now, the grouping on one variable (say the row variable) may obviously affect
the optimal grouping on the other attribute (the column variable.) For example,
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grouping first rows c1 and c2 in Table 2 we get the reduced table[
210 250 160 1
1 10 100 200

]
.

The most similar columns in this new table are obviously the first two. Hence,
the best columns partitioning would be {{a, b}, {d}, {e}} or {{a, b, d}, {e}}, but
clearly not the one found without grouping the rows. Due to this relationship be-
tween the partitions of the rows and the columns, it is then essential to determine
them simultaneously.

4 Simultaneous row and column partitioning

In this section, we introduce the method adopted for determining the best simul-
taneous partition of the rows and the columns. First, we specify the objectives
and briefly review related works. We then define the formal setting and describe
our merging heuristic.

4.1 Objectives

While the univariate optimal grouping of values has been abundantly studied
since the pioneering work of Walter Fisher [8], the literature about the simul-
taneous grouping of rows and columns of a table is less rich. We can mention
the related work by Fisher [9, 10] about the optimal grouping of the unknowns
and equations of predictive economic models. The simultaneous partitioning of
the cases (rows) and the variables (columns) in a data matrix has been studied
among others by Anderberg [1], Bock [5] and Govaert [13]. In [12, 13], Govaert
investigates the special case of binary tables. In the framework of contingency
tables that we are interested in, the optimal partitioning problem has been stud-
ied from different points of view. Benzecri [3] is interested in the partition in a
fixed number of groups that maximizes the Pearson Chi-square. A solution to
this problem is given in [7] in the form of an iterative heuristic that clusters
alternatively the rows and the columns. Gilula and Krieger [11] study how the
Pearson Chi-square behaves when the table is reduced by aggregation. Hirotsu
[16] and Greenacre [14] are interested in finding the most homogeneous tables.
As already mentioned, Breiman et al. [6] have considered with their Twoing
approach the joint dichotomization of two variables.

Our objective is to find both the number of groups and the joint partition
of rows and columns of a contingency table that maximizes the row-column
association. None of the works cited gives a satisfactory solution to this problem.
Some, like those done after Benzecri [3] or those by Breiman et al. [6] assume
the number of groups fixed a priori. The others either do not consider the case of
contingency tables or consider criteria, homogeneity for example, that are hardly
transposable in our setting.

Clearly, the exhaustive scanning of all combinations of partitions of each of
the variable is not practicable for large tables. We show in Section 7.1 that the
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search of the optimal solution becomes untractable when the number of values
of the predictive and/or target variable exceeds 5 or 6. We consider therefore a
heuristic, first introduced in [24], that successively looks for the optimal grouping
of two row or column categories. We recall the principle of the algorithm hereafter
and will propose an in depth study of its behavior and performance in Section 7.

4.2 Formal framework

Let X be a predictive attribute. From here on we shall drop the subscripts j
when there is no ambiguity. Cross-tabulating variable C with X generates a
contingency table T`×m with ` rows and m columns.

Let θCX = θ(T`×m) denote a generic association criterion for table T`×m.
This criterion θCX may thus be a Chi-square based association measure like
Cramer’s v or Tschuprow’s t, an asymmetrical PRE measure like Goodman-
Kruskal’s τCX or Theil’s uncertainty coefficient uCX , or, when both variables
are ordinal, an ordinal association index like Kendall’s τb or Somers’ dCX .

Let Pc be a partition of the values of the row variable C, and Px a partition of
the states of X. Each couple (Pc, Px) defines then a contingency table T(Pc, Px).
The optimization problem considered is then the maximization of the association
θCX among the set of couples (Pc, Px) of partitions :

max
Pc,Px

θ
(
T(Pc, Px)

)
. (2)

For ordinal variables, hence for interval or ratio variables, only partitions
obtained by merging adjacent categories make sense. We consider then the re-
stricted program {

max
Pc,Px

θ
(
T(Pc, Px)

)
u.c. Pc ∈ Ac and Px ∈ Ay

(3)

where Ac and Ax stand for the sets of partitions obtained by grouping adjacent
values of C and X. Letting Pc and Px be the unrestricted sets of partitions, we
have for `,m > 2, Ac ⊂ Pc and Ax ⊂ Px. Finally, note that ordinal association
measures may take negative values. Then, for maximizing the strength of the
association, the objective function θ

(
T(Pc, Px)

)
should be the absolute value of

the ordinal association measure.

4.3 The heuristic

The heuristic is an iterative greedy process that successively merges the two rows
or columns that most improve the association criteria θ(T).

Such a heuristic may indeed not end up with the optimal solution, but per-
haps only with a quasi-optimal solution. See Section 7.3 for empirical insights
on this sub-optimality. Formally, the configuration (P k

c , P k
x ) obtained at step k
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is the solution of 

max
Pc,Px

θ
(
T(Pc, Px)

)
u.c. Pc = P

(k−1)
c and Px ∈ P(k−1)

x

or
Pc ∈ P(k−1)

c and Px = P
(k−1)
x

, (4)

where P(k−1)
c stands for the set of partitions on C resulting from the grouping

of two classes of the partition P
(k−1)
c .

For ordinal variables, P(k−1)
c and P(k−1)

x should be replaced by the setsA(k−1)
c

and A(k−1)
x of partitions resulting from the aggregation of two adjacent elements.

Let T0 = T`×m be the table associated with the finest partition of the cate-
gories of C and X. Starting with T0, the algorithm successively determines the
tables Tk, k = 1, 2, . . . corresponding to the partitions solution of (4). The pro-
cess continues while θ(Tk) ≥ θ(T(k−1)) and is stopped when the best grouping
of two categories leads to a reduction of the criteria.

The quasi-optimal grouping is the couple (P k
c , P k

x ) solution of (4) at the step
k where

θ
(
T(k+1)

)
− θ

(
Tk

)
< 0 and θ

(
Tk

)
− θ

(
T(k−1)

)
≥ 0 .

By convention, we set the value of the association criteria θ(T) to zero for
any table with a single row or column. The algorithm then ends up with such a
single value table if and only if all rows (columns) are equivalently distributed.

5 Arbogodäı : a new decision tree approach

We now introduce the new Arbogodäı tree growing method. We first explain the
principle of the Arbogodäı algorithm and, then, describe how it works on an
example.

5.1 Principle of the algorithm

Arbogodäı follows the general principle of tree growing presented in Section 2.
Its specificity is an additional preparatory step before testing the attributes
at a node. This step consists in optimally reducing the size of the table that
crosses the target variable with the tested attribute. The splitting criterion is
then computed using the found partitions of both the attribute and the target
variable values. The splitting of the selected node is done according to the found
classes of values of the selected predictive attribute.

This additional step plays a role similar to discretization. The merging of
values can indeed be assimilated to some sort of discretization that works also
on nominal variables. Remember, however, that the merging is done here simul-
taneously at each step on the target and the predictive attribute.
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The reduction of the table is that for which the row-column association θ
is maximized. Indeed we use the heuristic of Section 4.3 and measure the asso-
ciation θ with the t of Tschuprow: t = {n−1[(`− 1)(m− 1)]−1/2 χ2}1/2, where
χ2 =

∑`
i=1

∑m
k=1 (nni.n.k)−1(nnik − ni.n.k)2 is the Pearson Chi-square statis-

tic. Unlike some other association measures, the t of Tschuprow always increases
with the merging of equivalently distributed rows or columns (see [25] and Sec-
tion 7.2.)

The splitting criterion is the reduction in uncertainty (gain in purity) achieved
with the columns of the reduced table as compared to its margin. The uncer-
tainty after the split is computed for every Xj by applying formula (1) on the
optimal reduced table for Xj at the considered node s.

More specifically, we use Laplace estimates of the column distributions after
the split, i.e. the proportion of cases that take the ith value of C in column k is
estimated by:

f
∗(λ)
i|k =

n∗ik + λ

n∗.k + `∗λ
(5)

where the * denotes values for the reduced table.
Using the quadratic (Gini) entropy, the gain in uncertainty considered by

Arbogodäı then reads,

h(C∗)− h(C∗|X∗
j ) = 1−

∑
i

f∗i.
2 −

∑
k

f∗.k
(
1−

∑
i

(f∗(λ)
i|k )

2)
=

∑
i

[( ∑
k

f∗.k(f∗(λ)
i|k )

2)
− f∗2i.

]
(6)

The use of Laplace estimates penalizes the gain of uncertainty obtained at
nodes with small counts. With very small counts, i.e. when λ represents a sig-
nificant proportion of the count, a split may even deteriorate the uncertainty
criterion (see [28] p.76.).

5.2 Example

We now describe the Arbogodäı algorithm through an example. We consider
the Flags dataset from the UCI repository [4]. The response variable C takes 6
nominal values C = {c1, c2, c3, c3, c4, c5, c6} and there are 29 mixed categorical
and quantitative predictive attributes X1, . . . , X29. The dataset contains 194
cases. Figure 2 shows an extract of the two first levels of the Arbogodäı tree for
these data.

Step 1. At the root of the tree, we have the distribution of all 194 cases among
the 6 values of the response C. The 29 predictive attributes are successively
tested. For every attribute, we first determine the optimal reduced crosstable
with the target variable. We then select the attribute for which the gain in
uncertainty computed on the reduced table is maximal. The winner is X7, which
takes 8 values: X7 = {a, b, c, d, e, f, g, h}. The two simultaneous groupings found



10 D. A. Zighed, G. Ritschard, W. Erray and V.-M. Scuturici

Table 3. Step 1 optimal crosstable and Laplace estimates of column distributions

C / X7 {c, d, e, h} {a, b, g} {f}
{c1} 33 6 0
{c2, c4, c5, c6} 2 100 1
{c3} 17 9 26

Total 52 115 27

f
∗(λ)

i|k {c, d, e, h} {a, b, g} {f} f∗i.
{c1} 0.618 0.059 0.033 0.201
{c2, c4, c5, c6} 0.055 0.855 0.067 0.530
{c3} 0.327 0.084 0.900 0.268

f∗.k 0.268 0.592 0.139 1

by the heuristic of Section 4.3 are X ∗
7 = {{c, d, e, h}; {a, b, g}; {f}} and C∗ =

{{c1}; {c2, c4, c5, c6}; {c3}}. The corresponding crosstable is shown in Table 3
together with the table of the derived conditional frequencies f

∗(λ)
i|k . The latter

have been computed by setting λ = 1. The marginal uncertainty is h(C∗) =
1− .2012 − .5302 − .2682 = .605 and the uncertainty after the split, which is the
weighted average of the uncertainty of each column, is h(C∗|X∗

3 ) = .314. The
gained information is thus .291. This is the maximal value achievable with any
of the 29 attributes.

Step 2. The process is repeated on every terminal node of the previously obtained
tree. Notice that we try to merge the original set of values X and C and not the
set of previously merged classes. In our example, the next best split occurs at
the middle node (X7 ∈ {a, b, g}). The attribute selected for splitting this node is
X3. The 6 values of the target C were merged to form 4 target classes. However,
no merging of the attribute values could improve the association between X3

and the target C. The node is therefore split in 4 new classes corresponding to
the 4 values of X3. This leads to the tree with 6 leaves shown in Figure 2.

Following steps. In our example, the tree growing process is stopped after step 2.
Without explicit stopping rules, the growing continues until the criterion can no

X 7  Î  { c , d , e , h }

c 5

c 1 , c 2
c 3 , c 4

c 6
0

3 4
8
0

c 5

c 1 , c 2
c 3 , c 4

c 6
0
0

1 2
0

c 5

c 1 , c 2
c 3 , c 4

c 6
0
0
6

1 0
c 5

c 1 , c 2
c 3 , c 4

c 6
3 1
7
1
6

X 3  =  a  X 3  =  b  X 3  =  c X 3  =  d

c 3

c 1
c 2

c 4
c 5
c 6

5 2

3 9
3 5

1 7
3 1
2 0

c 2 , c 4 , c 5 , c 6

c 1
c 3

2
3 3
1 7

c 2 , c 4 , c 5 , c 6

c 1
c 3

1 0 0
6
9

c 2 , c 4 , c 5 , c 6

c 1
c 3

1
0

2 6

X 7  Î  { a , b , g } X 7  =  f

Fig. 2. Example of an Arbogodäı tree
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Table 4. Crosstable for splitting the two leftmost leaves with X29

{a, b, d, e} {f}
{c1, c2, c4} 38 1
c3 0 3
other 0 0

{a, d, e} {b, f}
c3 2 2
c4 8 0
other 0 0

longer be improved. At step 3, Arbogodäı would scan the 6 leaves of the previously
grown tree.

Two further remarks should be made: (i) At a same level, nodes that do not
result from a same parent may have different partitions of the set C of response
values. (ii) When the same attribute is used as the splitting variable at more than
one node, its values are not necessarily partitioned the same way for each split.
For example, growing the tree of Figure 2 one level further leads to split each of
the two left most leaves of level 2 with the same attribute X29. The corresponding
crosstables are given in Table 4. It can be seen that the values of C are once par-
titioned as {{c1, c2, c4}, {c3}, {c5, c6}} and once as {{c3}, {c4}, {c1, c2, c5, c6}}.
Likewise, attribute X29 is used once with the partition {{a, b, d, e}, {f}} and
once with {{a, e, d}, {b, f}}.

6 The induced rules and their accuracy

Arbogodäı can generate two types of classification rules: (i) Classical rules by
disregarding the merged classes of response values in the final leaves. (ii) Multiple
conclusion rules for leaves with merged response values. This Section specifies
the nature of these rules, defines error rates adapted for them and presents
experimentation results.

We give hereafter the multiple conclusion rules generated by the tree of Fig-
ure 2. Each path joining the root to a leaf defines the premise of a rule. The
conclusion is drawn from the distribution in the leaf, i.e., for cases falling in the
leaf, the rule predicts the modal value in the leaf, or modal class of values when
some are merged. The tree has 6 leaves giving rise to the 6 following rules (the
value between parentheses is the confidence of the rule for the training data).
Clearly, when the majority class contains only one value we get classical rules.
Here, only R3 and R4 provide multiple conclusions in the form of “either c1

or c2.”

R1 : If X7 ∈ {c, d, e, h} then C = c1 (33/52)
R2 : If X7 = f then C = c3 (26/27)
R3 : If X7 ∈ {a, b, g} and X3 = a then C ∈ {c1, c2} (34/42)
R4 : If X7 ∈ {a, b, g} and X3 = b then C ∈ {c3, c4} (12/12)
R5 : If X7 ∈ {a, b, g} and X3 = c then C = c6 (10/16)
R6 : If X7 ∈ {a, b, g} and X3 = d then C = c5 (31/45)
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6.1 Error rates

The accuracy of the learned rules is usually assessed with the misclassification
error rate or equivalently with the classification success rate. For classical rules,
the misclassification rate reads err = 1 −

∑
s∈S fsfmax |s where fs is the pro-

portion of cases in leaf s and fmax |s = maxi fi|s is the frequency of the modal
response in leaf s.

For multiple conclusion rules, we can indeed simply compute the classical
error by ignoring the multiple conclusion and focusing on the modal value in
each leaf. For taking the multiple conclusion into account, we define however
tow additional kinds of error rates:

superclass error serr = 1−
∑
s∈S

fsf
∗
max|s

weighted superclass error werr = 1−
∑
s∈S

fsf
∗
max|s

( ∑
i∈Cmax,s

p̂i|max,s fi|max,s

)
where Cmax,s is the set of response values in the modal superclass at leaf s, fi|max,s

the frequency of response ci in that superclass and p̂i|max,s an estimation of the
probability of ci in the superclass. We get resubstitution error rates when the
frequencies are those of the learning sample and generalization error rates when
the frequencies are obtained from validation data. The estimations p̂i|max,s’s
are in any case computed on the training data. To get more reliable estimates,
we use the marginal distribution at the parent node. This can be justified as
follows. Values are merged when their distributions among the values of the
split attribute are similar. Hence, their distributions inside the superclass are
similar too and therefore similar to the marginal distribution.

The superclass error, serr, is computed as for classical rules but with the
superclass frequencies f∗i|s instead of the single response frequencies fi|s. Doing
so, we do not care indeed of classification error inside the modal superclasses.
This may have sense independently for each rule. We cannot compare, however,
the error rate of a rule that predicts for instance c1 with that of a rule that
predicts c1 or c2. Hence, the global superclass error does not make much sense.

The weighted superclass error, werr, takes the uncertainty inside the majority
class into account. It assumes that each case falling in a leaf is randomly assigned
to a value in the modal superclass. The supposed random assignment is done
according to the learned distribution inside Cmax,∫ . For instance for our example
tree, a case (X7 = a,X3 = a,C = c2) is correctly classified in the modal super-
class of leaf 3. In that leaf, the estimated proportion of cases taking C = c2 in
the superclass is 85%. Thus, we weight this correct classification down and count
it as a .85 correct classification. In resubstitution, if we use p̂i|max,s = fi|max,s,
this is equivalent to weighting down the success rates with the Gini uncertainty
of the distribution inside the superclass: werr =

∑
s[1−(1−serrs)Gini(Cmax,s)],

where serrs is the superclass error for rule s.
It is well known that the learning error rate suffers from an optimistic bias. It

underestimates the generalization error rate. For validation, it is then common
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to compute the classification error rate on a separate dataset not used for learn-
ing. Alternatively, and perhaps more frequently, a cross-validation error rate is
computed. A 10 folds cross-validation (10CV), for instance, consists in splitting
the learning sample into 10 approximately equally sized parts. Dropping each
time a different part we get 10 learning datasets from which 10 trees are in-
duced. For each of them we compute the error rate on the dropped out data.
The cross-validation error rate is the mean values of the 10 resulting error rates.

6.2 Experimentation

We have experimented our approach on 8 benchmark datasets. Table 5 gives
the cross-validation success rates obtained for each dataset with Arbogodäı and,
for the sake of comparison, with CART and CHAID. For Arbogodäı, we give the
rate derived from both the classical and the weighted superclass error. Arbogodäı
ranks first for 5 of the 8 datasets whatever error is considered. Unsurprisingly, its
superiority is mostly significant when the number of values of the target variable
is large.

Table 5. Cross-Validation classification success rates (in percents)

CART ChAID Arbogodäı
Dataset 1−err stdev 1−err stdev 1−err stdev 1−werr stdev

Iris (3 cl.) 95.11 0.08 94.81 0.08 98.35 0.11 95.50 0.08
Flags (6 cl.) 75.14 0.40 75.21 0.40 78.83 0.41 83.37 0.34
Breast (2 cl.) 97.54 0.17 97.19 0.15 98.17 0.13 98.08 0.17
Car (4 cl.) 83.47 0.32 93.62 0.23 86.75 0.32 87.81 0.31
Ionosphere (2 cl.) 92.10 0.19 89.68 0.20 89.34 0.3 93.36 0.25
Pima (2 cl.) 84.44 0.38 83.55 0.38 81.39 0.38 81.20 0.40
Wine (3 cl.) 97.71 0.19 97.99 0.19 98.09 0.07 95.21 0.20
Zoo (7 cl.) 87.57 0.22 85.99 0.26 88.61 0.12 94.04 0.16

7 Advanced study of the merging heuristic

The joint response and predictive attribute partitioning is done with the heuris-
tic described in Section 4.3. We propose here an in depth study of this greedy
algorithm that successively seeks the best merge of two row or column categories.
First, we examine its complexity and compare it with the exhaustive scanning
of all partitions. To acquire some knowledge about possible merging criteria,
the effect of the merging of two categories on a large choice of association mea-
sures has been examined analytically in [25]. We recall here the main findings of
this theoretical analysis. Then, we investigate the efficacy of the algorithm, by
providing details of simulation results shortly presented in [23, 25]. Finally we
discuss the generalization of the simultaneous merging process to more than two
variables and evoke some alternative merging strategies.
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7.1 Complexity of the simultaneous merging heuristic

This subsection compares the complexity of the heuristic to that of the exhaus-
tive exploration of all possible couples (Pc, Px) of row and column partitions.

For the exhaustive scanning, the number of cases to explore is given by
#Pc#Px, i.e. the number of row partitions times the number of column partitions.

Consider first the case of a nominal variable. The number B(a) = #P of
possible partitions of its a categories can be computed iteratively by means of

Table 6. Number of configurations explored

nominal case ordinal case
` = m exhaustive heuristic exhaustive heuristic

2 4 4 4 4
3 25 15 16 11
4 225 39 64 22
5 2704 81 256 37
6 41209 146 1024 56
7 769129 239 4096 79
8 17139600 365 16384 106
9 447195609 529 65536 137
10 1.345·1010 736 262144 172
20 2.675·1027 6271 2.749·1011 466
50 3.449·1094 101676 3.169·1029 4852
100 2.264·10231 823351 4.017·1059 19702

0 10 20 30 40 50
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60000

50000

40000

30000

20000

10000

0

number of categories c = r

number of cases explored
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ordinal

exhaustive

nominal

ordinal

heuristic

Fig. 3. Complexity versus size of the square table (for heuristic, values reported are
upper bounds.)
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Bell’s [2] formula B(a) =
∑a−1

k=0

(
a−1

k

)
B(k) with B(0) = 1. Hence the number of

cases to browse is B(`)B(m) in the nominal case, which is for instance about
1.3 · 1010 for ` = m = 10.

For ordinal variables, hence for discretization issues, only adjacent groupings
are considered. This reduces the number of cases to browse. The number G(a) =
#A of adjacent groupings of a values is G(a) =

∑a−1
k=0

(
a−1

k

)
= 2(a−1) . Thus, the

number of cases to explore is G(`)G(m) in the ordinal case. For ` = m = 10 this
is for example 262144.

For the heuristic, we can only give the maximal number of couples (Pc, Px)
we may have to scan. The actual number of couples explored depends indeed on
when the stop criterion is reached. Assuming ` ≤ m, the upper bound is given,
in the nominal case, by

∑m
j=2

[(
j
2

)
+

(
`
2

)]
+

∑`
i=2

(
i
2

)
+ 1, that is

`(`2 − 1) + m(m2 − 1)
6

+
(m− 1)`(`− 1)

2
+ 1

In the ordinal case, it reads

(` + m− 1)(` + m− 2)
2

+ 1 .

For m = ` = 10, these bounds are respectively 736 and 172.
Figure 3 and Table 6 show how the relative efficacy of the heuristic increases

with the number of initial categories. The values reported concern square tables.
It is worth mentioning that the seemingly exponential increase in the number
of cases reported for the heuristic concerns the upper bound. Practically, the
effective number of cases browsed will be much lower.

7.2 Summary of analytical results

Since the heuristic merges at each step two categories only, we studied in [25] the
effect of such a grouping on a choice of association measures, namely Pearson’s
X2 and the Likelihood Ratio G2 Chi-square statistics, Tschuprow’s t, Cramer’s
v, Goodman & Kruskal’s τ , Theil’s u, Goodman and Kruskal’s γ, Kendall’s τb

and Somers’ d. The latter three are ordinal measures and apply therefore only
to ordinal variables. The formula of the indexes are recalled in the appendix.

Table 7 summaries the results established in [25]. For the ordinal measures
that take their values in [−1, 1], we report effects on the absolute value of the
measure and consider, indeed, only the merging of two adjacent categories.

For our purpose, we expect an improve of the criteria when two equivalently
distributed values are merged. We do not recommend therefore criteria that can
remain unchanged after such a merge. Thus, Chi-squares statistics that cannot
be increased with a merge, but also the Cramer v and the asymmetrical PRE
measures (the Goodman-Kruskal τ and the Theil u) are not suited for our needs.
Among the ordinal measures, only the Goodman-Kruskal γ and the Kendall τb

satisfy the requested condition. Among the measures studied, the t of Tschuprow
that fits the condition and can be used with both ordered and unordered values
is our preferred choice.
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Table 7. Effect of a merge of two categories on a choice of association measures

merge of response values merge of predictor values
Criteria asym. not eq. distrib equiv. distrib. not eq. distrib. equiv. distrib

Chi-square Statistics
X2, G2 − = − =

Nominal Association Measures
Cramer’s v +/− +/ = +/− +/ =
Tschuprow’s t +/− + +/− +
G-K τ * +/− + − =
Theil’s u * +/− + − =

Ordinal Association Measures
G-K γ +/− + +/− +
Kendall’s τb +/− + +/− +
Kendall’s τc +/− +/ = +/− +/ =
Somers’ d * +/− = +/− +

7.3 Reliability of the joint merging heuristic

The purpose of this section is to assess the reliability of the results provided
by the heuristic. A series of simulation studies have been run to investigate two
aspects: (i) the proportion of global optima missed by the heuristic and (ii) how
far the solution of the heuristic is from the global optimum.

Several association measures have been examined. We report outcomes for
the t of Tschuprow, the τ of Goodman and Kruskal and the τb of Kendall.
Among the measures considered (simulations have been run for all the measures
listed in Table 7) the t of Tschuprow has been retained because it provides
the worse scores for both the proportion of missed optima and the deviations
from the global optima. The τ of Goodman and Kruskal has been selected as
a representative of the asymmetrical PRE (proportion of reduction in error of
prediction) measures. Likewise, the τb of Kendall has been selected to represent
the ordinal measures.

The comparison between quasi and global optima is done for square tables
of size 4, 5 and 6. Above 6, the global optimum can no longer be obtained in a
reasonable time.

For the t of Tschuprow and the τ of Goodman and Kruskal, we report re-
spectively in Tables 8 and 9 results for the nominal case as well as for the ordinal
case. The τb of Kendall being an ordinal measure, Table 10 exhibits only figures
for the ordinal case.

For each measure, size and variable type, 200 contingency tables have been
randomly generated. Each table was obtained by distributing 10000 cases among
its `×m cells with a random uniform process. This differs from the solution used
to generate the results given in [25], which were obtained by distributing the cases
with nested conditional uniform distributions: first a random percentage of the
cases is attributed to the first row, then a random percentage of the remaining
cases is affected to the second row and so on until the last row; the total of each
row is then likewise distributed among the columns. The solution retained here
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Table 8. Simulations: t of Tschuprow

Tschuprow nominal ordinal

Size 4× 4 5× 5 6× 6 4× 4 5× 5 6× 6
Non zero deviations 39.5% 62.5% 74.5% 23.5% 36% 46.5%

maximum 0.073 0.074 0.077 0.077 0.063 0.108
mean 0.025 0.023 0.028 0.019 0.019 0.012
standard deviation 0.015 0.014 0.016 0.014 0.016 0.015
skewness 0.986 0.979 0.598 1.674 0.972 3.394

With zero deviations
mean 0.010 0.015 0.021 0.005 0.007 0.006
standard deviation 0.016 0.016 0.018 0.011 0.013 0.012
skewness 1.677 1.062 0.615 3.168 2.211 4.457

Relative deviations
maximum 0.168 0.198 0.221 0.179 0.194 0.307
mean 0.079 0.077 0.093 0.063 0.066 0.046

Mean initial association 0.260 0.240 0.226 0.263 0.244 0.228
Mean global optimum 0.340 0.316 0.303 0.301 0.275 0.250

Table 9. Simulations: τ of Goodman and Kruskal

G&K τ nominal ordinal

Size 4× 4 5× 5 6× 6 4× 4 5× 5 6× 6
Non zero deviations 5% 6.5% 12% 6% 19% 32.5%

maximum 0.013 0.031 0.029 0.076 0.077 0.059
mean 0.007 0.010 0.008 0.025 0.016 0.013
standard deviation 0.004 0.009 0.009 0.021 0.016 0.012
skewness -0.308 1.004 1.181 1.107 2.361 1.908

With zero deviations
mean 0.0004 0.0007 0.0010 0.0015 0.003 0.004
standard deviation 0.0018 0.0033 0.004 0.008 0.009 0.009
skewness 5.323 6.471 5.137 6.685 5.040 3.255

Relative deviations
maximum 0.142 0.296 0.318 0.420 0.518 0.401
mean 0.062 0.091 0.079 0.216 0.168 0.149

Mean initial association 0.074 0.060 0.048 0.073 0.060 0.050
Mean global optimum 0.148 0.128 0.113 0.118 0.098 0.084

generates indeed tables that are closer to the uniform distribution and should
therefore exhibit lower association. As will be shown, low association are the less
favorable situations for the heuristic. Thus, we can expect the results obtained
with this random uniform generating process to provide some upper bounds for
the deviations from the global optima.

Tables 8 to 10 exhibit, for each series of tables generated, the proportion
of optima missed and characteristic values (maximum, mean value, standard



18 D. A. Zighed, G. Ritschard, W. Erray and V.-M. Scuturici

Table 10. Simulations: τb of Kendall

Kendall τb ordinal

Size 4× 4 5× 5 6× 6
Non zero deviations 19% 24.5% 32%

maximum 0.596 0.597 0.542
mean 0.235 0.182 0.140
standard deviation 0.195 0.190 0.157
skewness 0.076 0.598 0.652

With zero deviations
mean 0.045 0.045 0.045
standard deviation 0.125 0.123 0.111
skewness 2.775 2.849 2.445

Relative deviations
maximum 1.954 1.970 1.982
mean 0.355 0.259 0.074

Mean initial association (abs value) 0.094 0.078 0.064
Mean global optimum (abs value) 0.256 0.236 0.215
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Fig. 4. Initial, quasi and global otpima

deviation, skewness) of the distribution of the deviations between global and
quasi optima. Relative deviations, of which the maximum and the mean value
are reported, are the ratios between deviations and global optima. The last two
rows give respectively the average of the initial values of the criterion and the
mean value of the global optima. In Table 10, these two last figures are means
of absolute values since the τb’s may be negative.
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Fig. 5. Deviations versus global otpima

Additional insight for the Tschuprow’s t and Goodman and Kruskal’s τ cases
is provided by Figures 4 and 5. Figure 4 shows plots of the 200 initial values,
quasi optima and global optima for 6×6 cases. Figure 5 plots the 200 deviations
against the global optima.

Looking at Tables 8 to 10, we see that the proportion of optima missed by
the heuristic is relatively important and tends to increase with the size of the
table. The proportion is somewhat lower for PRE measures (the τ of Goodman
and Kruskal). This is probably due to the fact that PRE measures cannot be
improved by merging values of the predictor (see table 7), which means that the
groupings are in this case almost exclusively made on one (the target) variable.
Curiously however, the percentages of missed optima are, for PRE measures,
larger in the ordinal case than in the nominal one.

This high percentage of missed optima is luckily balanced by the small de-
viation between the quasi and global optima. The mean value of the non zero
deviations is roughly less than half the difference between the initial value of
the criterion and the global optimum. In the case of stronger initial associa-
tions than those generated here with a uniform random distribution, this ratio
becomes largely more favorable, i.e. smaller. The level and dispersion of the
non zero deviations seems to remain stable when the size of the table increases.
These deviations tend naturally to be larger when the association measure pro-
vides larger values. Inversely, the relative deviations take larger values when the
association measure tends to zero.

Finally, let us recall that the τb of Kendall takes its values in [−1, 1]. The
deviations may thus exceed the absolute value of the global optimum when the



20 D. A. Zighed, G. Ritschard, W. Erray and V.-M. Scuturici

quasi and global optima are of opposite signs. This explains why some maximal
relative deviations are greater than one.

Globally, the outcomes of these simulation studies show that the cost in
terms of reliability of the heuristic remains moderate when compared with the
dramatic increase of performance.

7.4 Multidimensional grouping

In supervised learning we are interested in the best way of using the predic-
tors to discriminate between the values of the response variable. Arbogodäı, like
other tree algorithms, proceeds by partitioning the predictor values in order to
reduce as much as possible the uncertainty on future responses in each class. At
each step of the growing process, a node is split according to a single predictor.
Interaction effects are introduced by successive splits along a stem. This has the
advantage to generate an easily described partition. Some interactions, however,
are not representable by trees. Hence, to allow for additional interaction effects,
it may make sense to consider splits defined simultaneously on several predic-
tors. Generalizing Arbogodäı in this way would indeed require to extend the
simultaneous row-column merging process to the more general multidimensional
joint merging case.

At the limit, if we consider all predictors simultaneously with the response,
the multidimensional merging process, assuming it is practicable, would provide
some optimal partition without resorting to a tree.

Our heuristic is intended for the simultaneous partitioning of two variables
only. There is no straightforward way to extend it to the general multivariate
case with more than two variables. On the one hand, it would require the defini-
tion of a suitable multivariate association measure, i.e. an index for a multiway
contingency table. Coefficients like the multiple correlation measure the associa-
tion between one (target) variable and the set of predictors. Hence, they do not
measure globally the association between all variables. On the other hand, mul-
tiplying the dimensions of the table would dramatically increase the complexity
of the heuristic and hence render it unusable.

A solution seems practicable, nevertheless, when we are in presence of one
target variable and a set of predictors. In the spirit of the multiple correlation, the
multivariate case can in this setting be handled by taking as column variable
the composite variable defined by the crossing of the predictors. The optimal
grouping of the row target variable and the composite predictor provides then
simultaneously the optimal conditional partitions of the predictors and the target
variable.

Let us illustrate with an example. The target variable y is dresses quality
(high, poor) and the predictors are x1 the type of dresses (W=women, M=men,
C=children) and x2 the family income (L=low, M=medium, H=high). An op-
timal solution may then look out as depicted in Table 11.

In this example, we see that medium and low family income are grouped
together for men and children while medium and high family income are grouped
for women. Likewise, all three categories women, men and children are grouped
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Table 11. An aggregated multivariate table

type W W M C W M M C C
quality income M H H H L L M L M

high 50 10
poor 5 100

together for either high income or low income. The interactions between type
and income that define these two classes clearly cannot be represented in tree
form. This demonstrates the usefulness of such a multivariate approach.

7.5 Alternative merging strategies

The heuristic discussed aims at finding the optimal way to merge row and column
categories in a contingency table. the adopted strategy focused on the maximiza-
tion of the association. Other criteria may obviously be considered and should be
investigated. For instance, when the data collected in the table are a sample of a
larger population, the association computed is an estimate and one should then
also care about its standard error or its significance level. Beside this aspect we
are presently working on a strategy to find an optimal aggregation under some
constraints. Indeed, the objective of the reduction of the size of the table is to
avoid cells with low frequencies that provide unreliable information. Therefore,
it is worth to be able to maximize for instance the association under a con-
straint on the minimal cell frequency. On the algorithmic side, we are presently
working on a top-down divisive approach in which, starting from the completely
aggregated table we would iteratively split rows or columns. We expect such a
top-down approach to be more efficient when the number of row and column
categories becomes large.

8 Conclusion

To conclude, we would like to point out that the Arbogodäı method is well suited
for mixed nominal and ordinal multi-valued attributes since the merging of any
or only adjacent values can be set on the fly. It is also able to handle similarly
nominal and ordinal, hence quantitative, target variables. Thus, Arbogodäı could
be seen as some sort of regression tree. The originality is that, unlike for instance
CART that generates point predictions for each leaf, Arbogodäı would provide
interval predictions. The multi-conclusion of an Arbogodäı rule can hence be seen
as a generalized interval for qualitative responses. Finally, let us mention that
we are presently designing further experiments for comparing Arbogodäı with
other tree methods and especially CHAID and CART. This aspect requires a
careful investigation. Indeed, the parameterization of the trees (depth, pruning,
stopping rules,...) plays a crucial role on the classification performance. We are
trying, therefore, to set up rigorous conditions that would ensure more fair, hence
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more useful, comparison results. We also plan to investigate the relationship to
the minimal description length (MDL) principle [22], as the optimally reduced
tables can be seen as theories that best describe, locally at each node, the relevant
knowledge about the relationship between each attribute and the target variable.

Appendix

Formula of the association criteria considered. See for example [19] for more details.
We denote by y the response row variable and by x the predictor column variable.

Chi-square Statistics

Pearson X2 =
∑

i

∑
j

(n nij − ni·n·j)
2

(nni·n·j)

Likelihood Ratio G2 = 2
∑

i

∑
j

nij log
( n nij

ni·n·j

)
Association Measures Based on Pearson Chi-square

Tschuprow’s t t =

√
X2

n
√

(`− 1)(m− 1)

Cramer’s v v =

√
X2

n(min{`, m} − 1)

Nominal PRE Measures

Goodman-Kruskal τ τy←x =
n

∑
i

∑
j

n2
ij

n·j
−

∑
i n2

i·

n2 −
∑

i n2
i·

Theil’s Uncertainty u uy←x =
n log2 n−

∑
i

∑
j nij log2

(
ni·n·j

nij

)
n log2 n−

∑
i ni· log2 ni·

Ordinal Association Measures

Let ηc, ηd, ηx and ηy be respectively the number of pairs
{
(xi, yi), (xj , yj)

}
with a

concordant ranking, i.e. xi > xj and yi > yj , with a discordant ranking, i.e. xi > xj

and yi < yj , with a tie on x only and with a tie on y only.

Goodman-Kruskal γ γ =
ηc − ηd

ηc + ηd

Somers’ d dy←x =
ηc − ηd

ηc + ηd + ηy

Kendall’s τb τb =
ηc − ηd√

(ηc+ηd+ηx)(ηc+ηd+ηy)
)

Kendall’s τc τc =
ηc − ηd

ηtot

( min{`, m}
min{`, m} − 1

)
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